Fortgeschrittene Netzwerk- und Graph-Algorithmen

Prof. Dr. Hanjo Täubig

Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München

Wintersemester 2010/11

k-Kantenzusammenhangskomponenten

David W. Matula: k-Components, Clusters, and Slicings in Graphs

- gegeben: ungewichteter, ungerichteter Graph G = (V, E)
- Wdh.: Eine *k*-Kanten-(Zusammenhangs-)Komponente von *G* ist ein maximaler *k*-kanten-zusammenhängender Teilgraph von *G*.
- Da wir in diesem Abschnitt nur über
 Kantenzusammenhangskomponenten sprechen, werden diese hier oft
 einfach als k-Komponenten bezeichnet
 (auch wenn sich das Wort sonst auf Knotenzusammenhang bezieht)
- Teilgraphen bestehend aus einem einzelnen isolierten Knoten (k=0) nennen wir triviale Komponenten, aber diese werden hier nicht als k-Komponenten angesehen.

Lemma

Seien G_1, G_2, \ldots, G_ℓ Teilgraphen von G, so dass ihre Vereinigung $\bigcup_{i=1}^{\ell} G_i$ (einfach) zusammenhängend ist.

Dann gilt:

$$\lambda\left(\bigcup_{i=1}^{\ell}G_i\right)\geq\min_{1\leq i\leq\ell}\{\lambda(G_i)\}$$

Beweis.

- Wenn $\bigcup_{i=1}^{\ell} G_i$ aus einem einzigen Knoten besteht, gilt die Behauptung (denn beide Seiten sind Null).
- Sei anderenfalls $C = (A, \bar{A})$ ein MinCut von $\bigcup_{i=1}^{\ell} G_i$.
- MinCut C muss mindestens eine Kante enthalten, da $\bigcup_{i=1}^{\ell} G_i$ zusammenhängend ist und mindestens 2 Knoten hat.
- Falls C eine Kante eines Teilgraphen G_j enthält, enthält sowohl A als auch \bar{A} jeweils mindestens einen Knoten aus $V(G_j)$, d.h. C muss einen Cut für G_j enthalten.
- \Rightarrow Für mindestens ein $j \in \{1,\ldots,\ell\}$ gilt: $\lambda\left(\bigcup_{i=1}^\ell G_i\right) \geq \lambda(G_j)$

Für die Teilgraphen G_1, G_2, \ldots, G_ℓ von G muss jeder Cut des induzierten Teilgraphen $G\left[\bigcup_{i=1}^\ell V(G_i)\right]$ einen Cut der einfachen Vereinigung der Teilgraphen $\bigcup_{i=1}^\ell G_i$ enthalten. Also gilt:

$$\lambda\left(G\left[\bigcup_{i=1}^{\ell}V(G_i)\right]\right)\geq\lambda\left(\bigcup_{i=1}^{\ell}G_i\right)$$

Folgerung

Wenn $G_1, G_2, ..., G_\ell$ Teilgraphen von G sind, so dass $\bigcup_{i=1}^{\ell} G_i$ zusammenhängend ist, dann gilt:

$$\lambda\left(G\left[\bigcup_{i=1}^{\ell}V(G_i)\right]\right)\geq\min_{1\leq i\leq\ell}\{\lambda(G_i)\}$$

Achtung:

In der Folgerung kann die Bedingung, dass die einfache Vereinigung $\bigcup_{i=1}^{\ell} G_i$ zusammenhängend ist, nicht durch die abgeschwächte Forderung, dass der induzierte Teilgraph der vereinigten Knotenmengen $G\left[\bigcup_{i=1}^{\ell} V(G_i)\right]$ zusammenhängend ist, ersetzt werden!

Bsp.: wenn G_1 und G_2 zwei disjunkte Kreise sind, die in G durch eine einzelne Kante verbunden sind, ist die Ungleichung in der Folgerung nicht erfüllt.

 Eine weitere Konsequenz des Lemmas ist die Tatsache, dass die k-Kanten-Komponenten jedes Graphen disjunkt sind.

Die Kohäsion / Zusammenhangsfunktion

Definition

Für jedes Element (Knoten oder Kante) $x \in V(G) \cup E(G)$ eines Graphen G ist die Kohäsion (cohesiveness) bzw. die Zusammenhangsfunktion h(x) definiert als maximaler Wert des Kantenzusammenhangs von allen Teilgraphen von G, die x enthalten.

Das Maximum $\sigma(G)$ aller Kohäsionswerte des Graphen G wird als Stärke (strength) des Graphen bezeichnet, also

$$\sigma(G) = \max\{\lambda(G') : G' \text{ ist Teilgraph von } G\}.$$

Die Kohäsionsmatrix

- Die Zusammenhangsfunktion kann durch die (symmetrische)
 Kohäsionsmatrix dargestellt werden.
- Zeilen und Spalten werden durch die Knoten des Graphen indiziert
- Eintrag für Position v_i, v_j ist jeweils die Kohäsion der Kante $\{v_i, v_j\}$, falls sie existiert, und sonst Null
- Die Kohäsion eines Knotens ist dann das Maximum der entsprechenden Zeile oder Spalte.
- Die Stärke σ von G ist das Maximum aller Matrixeinträge.

Die Kohäsionsmatrix

- Für Knoten $v \in V(G)$ gilt: $0 \le h(v) \le \deg(v)$
- Falls $\{v_i, v_j\} \in E(G)$, gilt:

$$1 \leq h(\{v_i, v_j\}) \leq \min\{\deg(v_i), \deg(v_j)\}$$

- h(x) = 0 gilt also nur, wenn x ein isolierter Knoten ist.
- $\sigma(G) = 0$ gilt nur, wenn G keine Kante enthält.
- $\sigma(G) = 1$ gilt genau dann, wenn G ein Wald mit mindestens einer Kante ist, denn jeder Kreis würde $\sigma(G) \ge 2$ implizieren.

Eindeutige Komponentenzuordnung

- Für $x \in V(G) \cup E(G)$ und $h(x) \ge 1$ muss es für jedes $k \in \{1, \ldots, h(x)\}$ einen k-kanten-zusammenhängenden Teilgraph geben, der x enthält.
- Insbesondere muss es auch einen maximalen solchen Teilgraph (also eine k-Kanten-Komponente) geben.
- Da die k-Kanten-Komponenten sich nicht überschneiden ist dieser maximale Teilgraph (die Komponente) eindeutig.

Folgerung

Für jeden Graphen G, jedes Element $x \in V(G) \cup E(G)$ und jede Zusammenhangszahl $k \in \{1, ..., h(x)\}$ existiert eine eindeutige k-Kanten-Zusammenhangskomponente in G, die x enthält.

Eindeutige Komponentenzuordnung

- Für jedes Element x mit $h(x) \ge 1$ gilt: Unter allen Teilgraphen, die x enthalten und die maximalen Kantenzusammenhang (also h(x)) haben, hat die eindeutige h(x)-Komponente, die x enthält, die meisten Knoten. Sie heißt h(x)-Komponente selektiert durch x (Symbol: H_x).
- Die Kohäsion eines Elements kann aus dem Wissen über einen beliebigen Teilgraph maximalen Kantenzusammenhangs, der das Element enthält, abgeleitet werden.
- Aus der Kenntnis der k-Kanten-Komponenten von G für alle k kann man h(x) für jedes Element x bestimmen.
- Aber man kann umgekehrt auch mit Hilfe der Zusammenhangsfunktion die Komponente H_x bestimmen.

Satz

Sei x ein Element des Graphen G mit $h(x) \ge 1$.

Sei M_x ein maximaler zusammenhängender Teilgraph von G, der x enthält und dessen Elemente alle Kohäsion mindestens h(x) haben.

Dann gilt $M_x = H_x$.

Beweis.

- Für $x \in V(G) \cup E(G)$ mit $h(x) \ge 1$ sei M_x definiert wie in dem Satz.
- Dann haben für jedes $y \in V(M_x) \cup E(M_x)$ alle Elemente von H_y Kohäsion mindestens $h(y) \ge h(x)$, so dass also gilt $H_y \cup M_x = M_x$, also $H_y \subseteq M_x$

Beweis.

• Da jedes Element von M_x in einem H_y ist, gilt:

$$M_{x} = \bigcup \{H_{y} : y \in V(M_{x}) \cup E(M_{x})\}$$

Nach dem Lemma gilt daher

$$\lambda(M_{\times}) \geq h(x)$$

• Da M_x selbst ein Teilgraph von G ist, der x enthält, gilt

$$\lambda(M_{x})=h(x)$$

• Damit ist M_x ein h(x)-kanten-zusammenhängender Teilgraph von G und muss in der h(x)-Komponente selektiert durch x enthalten sein, also in H_x .

Beweis.

- Da wegen $M_x = \bigcup \{H_y : y \in V(M_x) \cup E(M_x)\}$ der Teilgraph H_x in M_x enthalten sein muss, gilt $M_x = H_x$.
- Der im Satz definierte Teilgraph M_x ist damit eindeutig und kann bestimmt werden, indem man ausgehend von x alle Elemente anhängt, die von x über einen Pfad erreichbar sind, dessen Elemente alle Kohäsion mindestens h(x) aufweisen.

Folgerung

Für jeden Graph G und eine beliebige Zahl $k \in \{1, ..., \sigma(G)\}$ bilden die Knoten und Kanten von G mit Kohäsion mindestens k einen Graph, dessen Komponenten die k-Komponenten von G sind.

• Für jeden Graph G sind die h(x)-Komponenten selektiert durch $x \in V(G) \cup E(G)$ von besonderem Interesse. Es wird nun gezeigt, dass in dieser Menge alle k-Kanten-Komponenten von G (für alle $k \in \{1, \ldots, \sigma(G)\}$) enthalten sind.

Folgerung

Wenn G' eine k-Komponente (für ein $k \ge 1$) des Graphen G ist, dann gibt es ein $x \in V(G) \cup E(G)$, so dass $G' = H_x$ ist.

Beweis.

- Sei G' eine k-Komponente von G.
- Dann gilt $1 \le k \le \lambda(G')$ und G' ist damit auch eine $\lambda(G')$ -Komponente von G.
- Wähle $x \in V(G') \cup E(G')$ so, dass h(x) minimal ist und sei M_x definiert wie im Satz. (Man beachte, dass G' in M_x als Teilgraph enthalten sein muss.)
- $M_X = H_X$ ist eine h(x)-Komponente und deshalb k-kanten-zusammenhängend (da $k \le \lambda(G') \le h(x)$).
- Da G' ein maximaler k-kanten-zusammenhängender Teilgraph ist, gilt $G' = H_{\times}$.

Definition

Für einen Graphen G sei die Zusammenhangs(komponenten)vielfalt $\eta(G)$ definiert als

$$\eta(G) = |\{H : H \text{ ist eine } k\text{-Komponente von } G \text{ für ein } k \ge 1\}|$$

- Aus dem vorangegangenen Korollar folgt $\eta(G) \leq |V(G)| + |E(G)|$.
- Noch genauer (isolierte Knoten sind keine *k*-Komponenten):

Satz

Für jeden Graph G gilt:

$$\eta(G) \leq \left| \frac{|V|}{2} \right|$$

Beweis.

 Für den Beweis wird eine stärkere Ungleichung für zusammenhängende Graphen gezeigt:

$$\eta(G) \leq \left\lfloor \frac{|V(G)| + 1 - \lambda(G)}{2} \right
floor$$

- klar für zusammenhängende Graphen auf 1 oder 2 Knoten
- Induktion: angenommen G ist ein zusammenhängender Graph auf n ≥ 3 Knoten und die Ungleichung gilt für zusammenhängende Graphen auf weniger als n Knoten.
- Falls $\lambda(G) = \sigma(G)$, dann gilt $\eta(G) = 1$ und somit auch die Ungleichung.

→□▶→□▶→□▶ →□ →○○

Beweis.

- Sonst sei G' der Teilgraph von G, den man aus G durch Löschen der Elemente mit Kohäsion $\lambda(G)$ erhält, d.h. G' ist ein Graph, dessen Komponenten die $(\lambda(G)+1)$ -Komponenten von G sind.
- Die Kanten von G mit Kohäsion $\lambda(G)$ müssen einen Cut von G beinhalten.
- \Rightarrow G' ist nicht zusammenhängend oder hat weniger Knoten als G.
 - In beiden Fällen hat jede der Komponenten G'_1, G'_2, \ldots, G'_j von G' weniger Knoten als G.
- \Rightarrow Ungleichung lässt sich per Induktionsvoraussetzung auf alle G'_i mit $i \in \{1, ..., j\}$ anwenden.

Beweis.

- Ebenso gilt $\lambda(G'_i) \geq \lambda(G) + 1$ für $i \in \{1, \dots, j\}$.
- Eine *k*-Komponente von *G'* muss nun eine *k*-Komponente einer Komponente von *G'* sein und umgekehrt.
- Deshalb gilt

$$\eta(G') = \sum_{i=1}^{j} \eta(G'_i) \le \sum_{i=1}^{j} \left\lfloor \frac{|V(G'_i)| + 1 - \lambda(G'_i)}{2} \right\rfloor$$

$$\le \left\lfloor \frac{|V(G')| - j\lambda(G)}{2} \right\rfloor$$

• Es gilt $|V(G')| \le |V(G)| - 1$ oder G' ist nicht zusammenhängend, so dass $j \ge 2$ und $j\lambda(G) \ge \lambda(G) + 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ◆)९(

Beweis.

In jedem Fall gilt:

$$\eta(G') \leq \left\lfloor rac{|V(G)| - 1 - \lambda(G)}{2}
ight
floor$$

- *G* selbst ist eine *k*-Komponente von *G* für $k = \lambda(G)$, und $\eta(G) = \eta(G') + 1$.
- Damit gilt:

$$\eta(G) \leq \left\lceil \frac{|V(G)| + 1 - \lambda(G)}{2} \right\rceil$$

Beweis.

Ungleichung aus dem Satz:

- Die Ungleichung aus dem Satz ist für triviale Graphen klar.
- Für nichttriviale zusammenhängende Graphen folgt sie aus der verschärften Form.
- Für beliebige Graphen folgt sie aus der Summation über die *nichttrivialen* Komponenten.

