Functional Programming

Decorators

Little Nothings

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 1/14

Functional Programming

What? (Lisp, Scheme, Ocaml, Haskell)

m Functions treated as objects?

m Recursion’s domination

m List Processing?

m No statements.. but expressions?
m What is more important that How
m Higher order functions...
m Mathematical look?

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010

Advantages?

Pure/Clean/Short code?

m Formal provability.

m Modularity.

m Composability.

m Ease of debugging and testing.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 3/14

Functional Programming
Lamibda

On the fly functions? or simply expressions?

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 4/14

Functional Programming

if <condl>:
funcl1 ()
elif <cond2>:
func2 ()
else:
func3 ()

O © N O OO~ W N =

10 (<condl> and funcl ()) (<cond2> and func?2())

(func3())

218

15>>> X = 3
16 >>> def pr(s): return s
7 >>> (x==1 and pr(one’)) or (x==2 and pr(’two’))

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 4/14

18 or (prC other’))

19 " ot her’

20 >>> X = 2

21 >>> (x==1 and pr(one’))
22

23 two’

24

(x==2 and pr(’ two’))
(prC other’))

212

25

2% >>> pr = lambda s:s
27 >>> namenum = lambda
28

(x==1 and pr("one"))
(X==2 m pr("tV\D"))
(pr("other"))

Q0 x

29

s >>> namenum(1) ' one’
a1 >>> nhamenum(?2) 't wo’
2 >>> namenum(3) ' ot her’

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 5/14

Map, Reduce, Filter

Refresh
(Replacing FOR loops?)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 5/14

1 for e in Ist: func(e)
> mop(func, Ist)

3

4

s do_it = lambda f: f()
o (let f1, f2, f3 (etc) be functions)
rmap(doit, (f1,f2,f3))

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 6/14

While loops

They can be replaced too. But why?

Saves trouble by not giving values to variables.
How?

Example: Print Big Products.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

July 15,2010 6/14

Functional Programming

1

2 xs = (1,2,3,4)

s ys = (10,15,3,22)
4 bigmuls = ()
...more stuff ...

for y in ys:
if xxy > 25;
9 bigmuls.append((x,y))
o print bigmuls

5
s for x in xs:
7
8

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 7/14

Functional Programming

Functional Way?

Sandeep Sadanandan (TU, Munich r Fine Programmers

1 bigmuls = lambda xs ,ys:

> filter{ambda (x.,y):xxy > 25, combine(xs,ys))

3 combine =

lambda xs,ys: map(None, xsxlen(ys),

dupelms(ys ,len(xs)))

dupelms =

lambda Ist ,n: reduce(lambda s, 1:s+t,
mop(lambda | ,n=n: (I1)xn, Ist))

o N O O N

9

o print bigmuls((1.,2,3.,4),(10,15,3,22))

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 7/14

Functional Programming

1 print ((x,y) for x in (1,2.,3.,4)
2 for vy in (10,15,3,22)
3 if xxy > 25)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 8/14

Functional Module

functional provides Python users with numerous
tfools common in functional programming, such
as foldl, foldr, flip, as well as mechanisms for
partial function application and function
compaosifion,

functional comes in two flavours: one is written
in a combination of C and Python, focusing on
performance. The second is written in pure
Python and emphasises code readability and
portability.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 8/14

conpose(outer, inner, unpack=Fal se)

compose implements function compaosition. In
other words, it returns a wrapper around the
outer and inner callables, such that the return
value from inner is fed directly to outer.

1 >>> def add(a, b):
2 ... return a + b

.>>> def double(a):
5 ... return 2 x aQ

7 >>> compose(double, add)(5, 6)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 8/14

flip(func)

flip wraps the callable in func, causing it to
receive its non-keyword arguments in reverse
order.

1 >>> def triple(a, b, ¢):

2 ... return (a, b, ¢)

3

a>>> triple (s, 6, 7)

s (5, 6., 7)

6 >>>

7 >>> flipped_triple = flip (triple)
s >>> flipped_triple (5, 6, 7)

o (7, 6, 5)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 8/14

Functional Programming

1

2

3

4

5

6

7

foldl (func, start, iterable)

foldl takes a binary function, a starting value
(usually some kind of ‘zero”), and an iterable.
The function is applied to the startfing value and
the first element of the list, then the result of that
and the second element of the list, then the
result of that and the third element of the list,
and so on.

foldl(f, O, (1. 2, 3))

fCECFo, 1. 2), 3)

def foldl(func, start, seq):

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010

Functional Programming

8 if len(seq) == O:
9 return start
10

n return foldl(func,
12 func(start , seq(0)). seq(1:))

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 9/14

Documentation

Functional Programming Howto - python.org
http://docs.python.org/dev/howto/functional.htm

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 9/14

Chained Decorators

We saw decorators already.
No one stops us from decorating a function
twice (or more)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 10/ 14

Decorators

1 @synchronized

» @logging

s def myfunc(argl, arg2, ...):
4 ...do something

decorators are equivalent to:
nmyfunc = synchroni zed(I| oggi ng(nyfunc))
Nested in that declaration order

July 15,2010 10/ 14

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

Bad Decoration

(no function/callable is returned)
1 >>> def spamdef(fn):

2 ... print "spam spam spant
3

4 >>> @spamdef

5 ... def useful(a, b):

6 v print a2 + bxx2

7 a0

g SOAM, spamM, spam

o >>> useful (3, 4)

0 Traceback (most recent call last):

1 File "<stdin>", line 1, in ?

2 TypeEkrror: ' NoneType' object is not callable

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 10/ 14

Class Factory

Decorators do not let you modify class
instantiation, but can massage the methods.

No adjustments @ instantiation, but can change
the behaviour at runtime.

Now technically, a decorator applies when a
class statement is run, which for top-level classes
is closer to “compile time” than to “runfime.”

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 11/14

1 def arg_sayer(what):

2 def what_sayer(meth):

3 def new(self , xargs, sxxkws):

4 print what

5 return meth(self , xargs., sxkws)
6 return new

7 return what_sayer

8

9

def FooMaker(word):
10 class Foo(object):
1 @arg_sayer (word)
12 def say(self): pass
13 return Foo()

15 fOO 1 FooMaker(’ t hi s’)
16 fOO2 FooMaker(’ t hat ’)
7 print type(fool) ,; fool.say()

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010

s Output : <class ' main__.Foo' > this
v print type(foo2) ,; foo2.say()
o Output : <class ' _main__.Foo' > that

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 11/14

m The Foo.say() method has different behaviors for
different instances.

m The undecorated Foo.say() method in this case is a
simple placeholder, with the entire behavior
determined by the decorator.

m As already observed, the modification of Foo.say(is
determined strictly at runtime, via the use of the
FooMaker() class factory.

m The decorator is parameterized. Or rather arg_sayer()
itself is not really a decorator at all; rather, the
function returned by arg_sayer(), namely
what_sayer(), is a decorator function that uses a
closure to encapsulate its data. Parameterized
decorators are common, but they wind up needed
functions nested three-levels deep.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 12/14

Artificial MetaClass

Decorators cannot completely modify the
behaviour of classes.

But they can modify the __new__() method.
(Will see _net acl ass_ next week.)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 12/14

Decorators

new_ () method

 def flaz(self): return 'flaz’

> def flam(self): return ’'fl ani

3

4 def chcnge methods(new) :

5 "Warning: Only decorate the
6 if new._name__ ="' _ new '’

7 return new

8 def __new__(cls, xargs, xxkws):
9 cls.flaz = flaz

10 cls.flam = flam

1" if hasattr(cls, 'say’): | cls.say
12 return super(cls. ,,closs,, .
13 return __new__

15 class Foo(object):
16 @change_methods
17 def __new__(): pass

cls).__new__(

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

July 15,2010

12/14

Decorators

18 def say(self): print "H ne:", self

19

20 foo = Foo ()

2 print foo. flaz ()

» flaz

23 fOoo.say ()

2 ' FOO' object has no attribute ’say’

Hmm... careful.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 12/14

sSome Class things

m Pass self manually
m Check for propery and method existence
m Modify classs after creation

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 13/ 14

1 class Class:

2 def a.method(self):
3 print ' Hey a net hod’
4

s instance = Class ()

6

7 instance .a_.method ()

s ' Hey a net hod’

Q

0 Class.a_method(instance)
n’ Hey a met hod’

1w class Class:
15 answer = 42
16

7 hasattr(Class, "answer’)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 13/14

8 True
o hasattr(Class, 'question’)
2o False

» getattr(Class, 'answer’)

23 42

2 getattr(Class, 'question’ , "What is six tines nir
s "What is six tines nine?

s getattr(Class, 'question’)

7 AttributeError

» class Class:
30 def method(self):
31 print ' Hey a net hod’

3 instance = Class ()
x instance .method ()

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 13/14

s ' Hey a nmet hod’

36

w7 def new_method(self):

38 print ' New net hod w ns!’
39

» Class.method = new_method

o instance .method ()

~ ' New net hod wi ns!’

Needless to mention, modifying classes is not a
great idea.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 13/14

Resources

m http://www.siafoo.net/article/52

|
http://wiki.python.org/moin/PythonSpeed/Per

Eg. String Concatenation: Use “join”

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 14 /14

newlist = ()
for word in oldlist:
newlist .append(word. upper())

now0 N =

(&)

s Uupper = str.upper

7 newlist = ()

s append = newlist.append
s for word in oldlist:

10 append(upper(word))

uw— 40k Words —

16 Version Time (seconds)
17 Basic loop 3.47

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 14 /14

s Eliminate dots 2.45
1w Using mop function 0.54

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 14 /14

1 wdict = {}
» for word in words:
if word not in wdict:

3

4 wdict(word) = 0
5 wdict (word) += 1

6

7

s wdict = {}

s for word in words:

10 try:

1" wdict (word) += 1
12 except KeyError:
13 wdict (word) = 1

16 wdict = {}
17 get = wdict. get

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 14 /14

e for word in words:
19 wdict (word) = get(word, 0) + 1

More or less same time taken now.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 15,2010 14 /14

	Outline
	Functional Programming
	Decorators
	Little Nothings

