
Outline

1 Opening URLs

2 Regular Expressions

3 Generators

4 Parsing

5 Decorators

6 Static Variables

7 Anonymous Classes

8 Problems

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 1 / 41

Opening URLs

Opening URLs

The module used for opening URLs is
urllib2

The method used is similar to the file open in
syntax

Returns a handler to the URL, which could
be used as a handle to a file (readlines ,
read etc.)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 2 / 41

Opening URLs

1 >>> import u r l l i b 2
2 >>> r = u r l l i b 2 . urlopen (’http://python.org/’)
3 >>> html = r . read(300)
4 >>> p r i n t (html)
5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
6 Transitional//EN" "http://www.w3.org/TR/xhtml1/
7 DTD/xhtml1-transitional.dtd" >

8

9

10 <html xmlns="http://www.w3.org/1999/xhtml" xml :
11 lang="en" lang="en" >

12

13 <head>

14 <meta http−equiv="content-type"
15 content="text/html; charset=utf-8" />
16 < t i t l e >Python Programming Language −−
17 O f f i c i a l Website</ t i t l e >

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 3 / 41

Opening URLs

General Way

Not all urls can be opened this way.

There could be complicated operations
such as communicating with he cgi-bin of
the server; or some ftp server; etc.

For that purpose, there are Requests and
Opener objects

Requests can send along extra data to the
server
Opener can be used for complicated
operations.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 3 / 41

Opening URLs

1 >>> from u r l l i b 2 import Request
2 >>> req = Request (’http://www.google.com/’)
3 >>> brwser = ’Mozilla/4.0 (compatible; MSIE 6.0;
4 Windows NT 5.0)’
5 >>> req . add header(’User-Agent’ , brwser)
6 >>> opener = u r l l i b 2 . build opener ()
7 >>> opened = opener .open(req)
8 >>> p r i n t (opened. read(150))
9 <!doctype html><head><meta http−equiv=content−typ

10 content="text/html; charset=UTF-8" >< t i t l e >hal lo −
11 Google Search</ t i t l e ><sc r ip t >window. google={ kE I : "
12 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 4 / 41

Opening URLs

On Error?

In case of errors, one can use the exception
to show the error messages

Two Exceptions which come handy are
HTTPError and URLError

They have to be used in the same order
when you write the code. Because
HTTPError is a subclass of URLError

See the example below.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 4 / 41

Regular Expressions

1

2 from u r l l i b 2 import Request , urlopen , URLError , H
3 req = Request (someurl)
4 t r y :
5 response = urlopen (req)
6 except HTTPError , e :
7 p r i n t (’The server didn’ t f u l f i l l the req . ’)
8 print(’ E r r o r code: ’, e.code)
9 except URLError, e:

10 print(’ We fa i led to reach a server . ’)
11 print(’ Reason : ’, e.reason)
12 else:
13 print(’ everything i s f ine ’)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 5 / 41

Regular Expressions

Regular Expressions - A recap

What are they?
A means to find out string patters, To match
strings, To find substrings and so forth

When not to use them?
When they are unavoidable. In normal
cases where one needs to check whether a
string is a substring of another, then is could
be easier and more understandable and
perhaps more efficient to use the normal
string methods.

When to use them?
When you know they must be.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 5 / 41

Regular Expressions

Regular Expressions in Theory

Finite Automata - NFA and DFA, Alphabets

Books on Compilers give a good account of
these

Limitations : (anbn), palindromes

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 6 / 41

Regular Expressions

Meta Characters

If you want to search for ’’test’’ , then
easy.

What if you don’t know what you want to
search for. For example a telephone
number? (Which you don’t know)

There are some classes of characters which
are dedicated to make the using of regular
expressions possible.

Normal characters match for themselves.
E.g. t matches t .

Some special characters don’t match
themselves.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 7 / 41

Regular Expressions

. ˆ $ * + ? { [] \ | ()

[and] : These can be used to specify a
class of characters.

[a-z] : stands for all the lowercase
characters. The literal ’-’ has special
meaning inside the square brackets.

[abc$] stands for the characters
’a’, ’b’, ’c’ and the dollar sign.

Even though $ has special meaning in
RE context, but inside [and]

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 7 / 41

Regular Expressions

ˆ : For negation/complementing a set

[ˆa-z] means everything which is
not lowercase.

\ is perhaps the most important
metacharacter.

It is used when a meta-character
is to be matched.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 7 / 41

Regular Expressions

\d : Every decimal digit. [0-9]

\D : Everything non-digit; [ˆ0-9]

\s : Any whitespace; [\t\n\r\f\b]

\S : Any nonwhitespace character

\w : Any alpha-numeric; [a-zA-Z0-9_]

\W : Any non-alpha-numeric-character

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 8 / 41

Regular Expressions

Importance of DOT

The character “.” matches everything but a
newline.
Even that can be done using a different mode
of the RE module, using re.DOTALL

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 8 / 41

Regular Expressions

Repeating Things

* : ca * t would match ct, cat, caat, caaaat,
...

+ : ca+t would match all of them except for
ct

? : ca?t would match only ct or cat

{m,n} : Minimum m times, maximum n
times.
ca{2,4}t would match caat, caaat and
caaaat. But not anything else.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 9 / 41

Regular Expressions

Repeating Things

It is easy to see that * is nothing but {0,}

Similarly, + is nothing but {1,} and

? is {0,1}

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 10 / 41

Regular Expressions

a|b matches a or b.

ˆ, $ match the beginning
and ending of a line.

\A, \Z match the beginning
and end of a string

’\A[abc] * \Z’ matches all strings
which are combinations of a, b and c

\b matches word boundaries:
’class\b’ match ’class next Thursday’

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 10 / 41

Regular Expressions

’class\b’ doesn’t match ’classified’

a[bcd] * b against ’abcbd’

a The a in the RE matches.

abcbd The engine matches [bcd] * ,
going as far as it can,
which is to the end of the
string.

Failure The engine tries to match b,
but the current position is
at the end of the string,

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 10 / 41

Regular Expressions

so it fails.

abcb Back up, so that [bcd] *
matches one less character.

Failure Try b again, but the current
position is at the last
character, which is a "d".

abc Back up again, so that [bcd] *
is only matching "bc".

abcb Try b again. This time but the
character at the current

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 10 / 41

Regular Expressions

position is "b", so it succeeds.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 11 / 41

Regular Expressions

Using Them

Compile them

Match them

match() : Determine if the re matches the string
search() : Scan and find the matches
findall() : Find all the matches
finditer() : Return and iterator

Use them

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 11 / 41

Regular Expressions

1 >>> import re
2 >>> p = re . compile (’[a-z]+’)
3 >>> p
4 < s r e . SRE Pattern object at 80c3c28>

5 >>> p.match("")
6 >>> p r i n t (p .match(""))
7 None
8 >>> m = p.match(’tempo’)
9 >>> p r i n t (m)

10 < s r e . SRE Match object at 80c4f68>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 12 / 41

Regular Expressions

Using Them

group() : The string matched

start() : Start of the string

end() : The End of the string

span() : A tuple with (start, end)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 12 / 41

Regular Expressions

1 >>> m. group ()
2 ’tempo’
3 >>> m. s t a r t () , m.end()
4 (0 , 5)
5 >>> m. span ()
6 (0 , 5)
7 >>> p r i n t (p .match(’::: message’))
8 None
9 >>> m = p. search (’::: message’) ; p r i n t (m)

10 <re . MatchObject instance at 80c9650>

11 >>> m. group ()
12 ’message’
13 >>> m. span ()
14 (4 , 11)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 12 / 41

Regular Expressions

1 p = re . compile (. . .)
2 m = p.match(’string goes here’)
3 i f m:
4 p r i n t (’Match found: ’ , m. group ())
5 else :
6 p r i n t (’No match’)
7 −−
8 >>> p = re . compile (’\d+’)
9 >>> p. f i n d a l l (’12 drummers drumming,

10 11 pipers piping,
11 10 lords a-leaping’)
12 [’12’ , ’11’ , ’10’]
13 −−
14 >>> i t e r a t o r = p. f i n d i t e r (’12 drummers drumming,
15 11 ... 10 ...’)
16 >>> i t e r a t o r
17 <callable−i t e r a t o r object at 0x401833ac>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 12 / 41

Generators

18 >>> f o r match in i t e r a t o r :
19 . . . p r i n t (match. span ())
20 . . .
21 (0 , 2)
22 (22 , 24)
23 (29 , 31)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 13 / 41

Generators

Generators

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 13 / 41

Generators

Generators

Iterator creators (So to speak)

Regular functions which return without
returning.

Uses yield statement

Each call of next resumes from where it left
off.

State/Data values stored

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 14 / 41

Generators

1

2 def reverse (data) :
3 f o r index in range(len (data)−1, −1, −1):
4 y ie ld data[index]
5

6 >>> f o r char in reverse (’golf’) :
7 . . . p r i n t (char)
8 . . .
9 f

10 l
11 o
12 g

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 15 / 41

Generators

Generators ...

Generators are the equivalent of class
based Iterators

iter and next are created
automatically

Saving the vales makes it easier. No need to
separate initialization/storage of index.

Automatic raising of Exception on
termination.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 15 / 41

Generators

Simulating Generators

Can be simulated with normal functions.

1 Start with an empty list.
2 Fill in the list instead of the yield statement
3 Then return an iterator of the list
4 Same result

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 16 / 41

Generators

1

2 def r (data) :
3 f o r index in range(len (data)−1, −1, −1):
4 y ie ld data[index]
5

6

7 def r S (data) :
8 l i s t = []
9 f o r index in range(len (data)−1, −1, −1):

10 l i s t .append(data[index])
11 re turn i t e r (l i s t)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 16 / 41

Parsing

1

2 >>> import gs
3 >>> f o r x in gs . r (’this is cool’) :
4 . . . p r i n t (x)
5 . . .
6 l o o c s i s i h t
7 >>> f o r x in gs . r S (’this is cool’) :
8 . . . p r i n t (x)
9 . . .

10 l o o c s i s i h t
11 >>>

12 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 17 / 41

Parsing

Parsers in Python

XML

HTML

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 17 / 41

Parsing

XML Parser

SAX (Simple API for XML)

Reads the file as required
Special methods are called when tags are
opened/closed

DOM

Reads the whole file in a go
The whole structure is readily accessible for use.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 18 / 41

Parsing

SAX Parser

xml.sax.make parser() gives a generic
parser object.

The parser object is an instance of
XMLReader. (It can read and output
structured XML)

A content handler has to be implemented
for the XMLReader (example)

Contenthandler is a class which is
implemented for the specific needs

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 19 / 41

Parsing

ContentHandler

startDocument()/endDocument() are
called from reading and processing the
XML-Codes

startElement(name, attrs) is called
whenever a new tag is opened

name is the name of the tag
attrs contains the attributes part of the tag. It
is an attribute object.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 20 / 41

Parsing

Contenthandler

endElement(name) is called when a tag is
closed.

characters(str) gives the CDATA in the
parameter to be used.

There is no guarantee that all the data
inside would be given in a single instance.
One has to collect data if needed.
(Example)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 21 / 41

Parsing

1

2 from xml . sax . handler import ContentHandler
3 class CDATAPrinter (ContentHandler) :
4 def startElement (s e l f , name, a t t r s) :
5 s e l f . cdata=’’
6 def endElement(s e l f , name) :
7 i f len (s e l f . cdata . s t r i p ()) > 0:
8 p r i n t (name, ’:’ , s e l f . cdata . s t r i p ())
9 def characters (s e l f , s t r) :

10 s e l f . cdata += s t r

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 21 / 41

Parsing

1 <something>

2 <s t r i ng >HA HA HA </ s t r i ng >

3 <number>12 34 43 </number>
4 <nothing> nothing </nothing>

5 </something>

6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 >>> import boo
8 >>> import xml . sax
9 >>> parser = xml . sax . make parser ()

10 >>> parser . setContentHandler (boo. CDATAPrinter ())
11 >>> parser . parse (’cal.xml’)
12 s t r i n g : HA HA HA
13 number : 12 34 43
14 nothing : nothing
15 something : nothing
16 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 22 / 41

Parsing

HTML Parsing

HTML is sometimes XML

HTML tags need not be closed always

HTML tags can have attributes and some
have always

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 22 / 41

Parsing

HTML Parsing

Similar to XML parsing

There is an abstract class HTMLParser which
needs to be implemented for own purposes

It contains the following methods

handle starttag(tag, attrs)
handle endttag(tag)
handle startendtag(tag,attrs)
handle data(data) (for characters(str))

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 23 / 41

Parsing

HTML Parsing

The HTMLParser has its own ContentHandler.
Just calling HTMLParser() gives an
instance of the class.

For parsing, one has to feed the html-text to
the parser. parser.feed(hstring)

As far as it can, it would ignore the errors in
the string. Sometimes EOF reaches before
the error-limit is reached.

To read a URL, the following code would be
useful.
parser.feed(urllib2.open(URL).read())

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 24 / 41

Parsing

1

2 from HTMLParser import HTMLParser
3 class MyHTMLParser (HTMLParser) :
4 def handle starttag (s e l f , tag , a t t r s) :
5 p r i n t ("Breaking In: " , tag)
6 def handle endtag (s e l f , tag) :
7 p r i n t ("Getting Out: " , tag)
8 def handle startendtag (s e l f , tag , a t t r s) :
9 p r i n t ("Empty Tag??: " , tag)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 24 / 41

Parsing

1 >>> import myhtmlparser
2 >>> import u r l l i b 2
3 >>> parser = myhtmlparser . MyHTMLParser ()
4 >>> parser . feed(u r l l i b 2 . urlopen ("http://www.bing.com/"
5 Breaking In : html
6 Breaking In : head
7 Empty Tag??: meta
8 Breaking In : s c r i p t
9 Getting Out : s c r i p t

10 Breaking In : s c r i p t
11 Getting Out : s c r i p t
12 . . .
13 . . .
14 . . .
15 Breaking In : s c r i p t
16 Getting Out : s c r i p t
17 Getting Out : body

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 24 / 41

Decorators

18 Getting Out : html

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 25 / 41

Decorators

Decorator Pattern

In object-oriented programming, the
decorator pattern is a design pattern that
allows new/additional behaviour to be
added to an existing class dynamically.

In Python one cannot say that to be the
same with the Decorator; even though one
can achieve the same functionality with
decorators in python.

So, what are decorators IN Python?

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 25 / 41

Decorators

Functions taking Functions

Functions can have pointers to other
functions as parameters.

A function which can take another function
as its parameter and can achieve
something there by could be mainly
classified as a decorator.
See example.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 26 / 41

Decorators

1 >>> def ourdecorator2 (foo) :
2 . . . def newfoo () :
3 . . . p r i n t ("We are to call" , foo . name)
4 . . . re turn foo ()
5 . . . re turn newfoo
6 . . .
7 >>>

8 >>> foo = ourdecorator2 (foo1)
9 >>>

10 >>> foo ()
11 We are to ca l l foo1
12 Hel lo World
13 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 26 / 41

Decorators

1 >>>

2 >>> def ourdecorator (foo) :
3 . . . p r i n t ("We are to call" , foo . name)
4 . . . re turn foo ()
5 . . .
6 >>> def foo1 () :
7 . . . p r i n t ("Hello World")
8 . . .
9 >>>

10 >>> foo = ourdecorator (foo1)
11 We are to ca l l foo1
12 Hel lo World
13 >>>

14 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 27 / 41

Decorators

Similar to Macros

Decorators are similar to MACROS in other
programming languages

They are usually used to make a wrapper
around functions

And of course, classes too.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 27 / 41

Decorators

Usage, then Creation

Function decorators are placed above the
function with the key-character ’@’

@thedecorator
def foo():
....

The interpreter compiles foo and calls the
decorator with that as argument.

The result of that replaces the code for foo

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 28 / 41

Decorators

How to implement decorator

Could be Functions or Classes.

The condition is that whatever the
decorator returns, that should be callable.

An object is callable, if the method call
is implemented.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 29 / 41

Decorators

1 class theDecorator (object) :
2 def i n i t (s e l f , f) :
3 p r i n t ("inside theDecorator.__init__()")
4 f ()
5 def c a l l (s e l f) :
6 p r i n t ("inside theDecorator.__call__()")
7

8

9 @theDecorator
10 def foobar () :
11 p r i n t ("inside foobar()")
12

13 p r i n t ("Finished decorating foobar()")
14

15 foobar ()

1 >>> import decorators . py
2 i n s ide theDecorator . i n i t ()
Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 29 / 41

Decorators

3 i n s ide foobar ()
4 F in ished decorating foobar ()
5 i n s ide theDecorator . c a l l ()

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 30 / 41

Decorators

Observation

From the output, it is clear that the init is
called when the decorator is used.

So, usually, the call to the function is done
only in the call function.

Once a function is decorated, the
behaviour totally changes. The call goes
only to the decorated code. (line number 4
of the output)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 30 / 41

Decorators

1 class loggerdeco (object) :
2

3 def i n i t (s e l f , f) :
4 s e l f . f = f
5

6 def c a l l (s e l f) :
7 p r i n t ("Entering" , s e l f . f . name)
8 s e l f . f ()
9 p r i n t ("Exited" , s e l f . f . name)

10

11 @loggerdeco
12 def func1 () :
13 p r i n t ("inside func1()")
14

15 @loggerdeco
16 def func2 () :
17 p r i n t ("inside func2()")

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 30 / 41

Decorators

1

2 func1 ()
3 func2 ()
4 Enter ing func1
5

6

7 i n s ide func1 ()
8 Exited func1
9 Enter ing func2

10 i n s ide func2 ()
11 Exited func2

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 31 / 41

Decorators

Using Functions

The same can be achieved using functions,
instead of classes.

The decorator functions usually enclose the
decorated function in between the
decoration.

This is done inside a subfunction (equivalent
of call and the pointer to the
subfunction is returned.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 31 / 41

Decorators

1 def loggerdeco (f) :
2 def new f () :
3 p r i n t ("Entering" , f . name)
4 f ()
5 p r i n t ("Exited" , f . name)
6 re turn new f
7

8 @loggerdeco
9 def func1 () :

10 p r i n t ("inside func1()")
11

12 @loggerdeco
13 def func2 () :
14 p r i n t ("inside func2()")

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 31 / 41

Decorators

1 func1 ()
2 func2 ()
3 p r i n t (func1 . name)
4

5

6 Enter ing func1
7 i n s ide func1 ()
8 Exited func1
9 Enter ing func2

10 i n s ide func2 ()
11 Exited func2
12 new f

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 32 / 41

Decorators

Observation

The name of the functions have been
changed to new f .

This can be changed by reassigning
new f. name = f. name

There are many cool uses of decorators. You
can see more examples at
http://wiki.python.org/moin/PythonDecoratorLibrary

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 32 / 41

Decorators

1 class memoized(object) :
2 def i n i t (s e l f , func) :
3 s e l f . func = func
4 s e l f .cache = {}
5 def c a l l (s e l f , ∗args) :
6 t r y :
7 re turn s e l f .cache[args]
8 except KeyError :
9 s e l f .cache[args] = value = s e l f . func (∗args)

10 re turn value
11 except TypeError :
12 re turn s e l f . func (∗args)
13 def r e p r (s e l f) :
14 re turn s e l f . func . doc
15

16 @memoized
17 def fibonacci (n) :

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 32 / 41

Decorators

18 "Return the nth fibonacci number."
19 i f n in (0 , 1) :
20 re turn n
21 re turn fibonacci (n−1) + fibonacci (n−2)
22

23 f o r i in xrange (1 , 100 , 9) :
24 p r i n t (fibonacci (i))

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 32 / 41

Static Variables

1 [sadanand@lxmayr10 @ ˜] time python memorized . py
2 1
3 55
4 4181
5 317811
6 24157817
7 1836311903
8 139583862445
9 10610209857723

10 806515533049393
11 61305790721611591
12 4660046610375530309
13

14 real 0m0.014 s
15 user 0m0.008 s
16 sys 0m0.000 s
17 [sadanand@lxmayr10 @ ˜]

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 33 / 41

Static Variables

Static Variables and Methods

A static variable in a class has always the
same value, independent of the instances.

Static variables are class variables, they
belong to the class than to the instances

They are accessed by the name of the
Class, rather than the instance.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 33 / 41

Static Variables

1 class myStatic :
2 instances = 0
3 def i n i t (s e l f) :
4 myStatic . instances += 1
5

6 def howmany(s e l f) :
7 re turn myStatic . instances
8

9 x = myStatic ()
10 p r i n t (x .howmany())
11 y = myStatic ()
12 p r i n t (y .howmany())
13 p r i n t (x .howmany())
14 −−−−−−−−−−
15 p r i n t (1 , 2 , 2)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 34 / 41

Static Variables

Static Methods

They have the same return value
independent of the class instance

They don’t have the self parameter

For the same reason, they cannot access
any of the self. * objects.

The keyword is a decorator named
@staticmethod

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 34 / 41

Static Variables

1 class myStatic :
2 instances = 0
3

4 def i n i t (s e l f) :
5 myStatic . instances += 1
6

7 @staticmethod
8 def howmany() :
9 re turn myStatic . instances

10

11

12 x = myStatic ()
13 p r i n t (myStatic .howmany())
14 y = myStatic ()
15 p r i n t (myStatic .howmany())
16 =========================
17 p r i n t s 1 , 2 as expected .

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 35 / 41

Static Variables

Classmethod

@classmethod is perhaps a special thing for
python.

The methods decorated with this gets as the
initial variable a class which is the original
class (not the instance)

That helps the function to act like a normal
method of the class, by accepting all the
attributes and treat them as static as well.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 35 / 41

Static Variables

1 class myStatic :
2 instances = 0
3 def i n i t (s e l f) :
4 s e l f . addinstance ()
5

6 @classmethod
7 def howmany(c l s) :
8 re turn c l s . instances
9 @classmethod

10 def addinstance (c l s) :
11 c l s . instances += 1
12

13 x = myStatic ()
14 p r i n t (myStatic .howmany())
15 y = myStatic ()
16 p r i n t (myStatic .howmany())
17 ==============================

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 35 / 41

Static Variables

18 p r i n t s 1 , 2 as expected .

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 35 / 41

Static Variables

1 class myStatic :
2 instances = 0
3

4 def i n i t (s e l f) :
5 s e l f . addinstance ()
6

7 @classmethod
8 def howmany(c l s) :
9 re turn c l s . instances

10

11 @classmethod
12 def addinstance (c l s) :
13 c l s . instances += 1
14

15 def nastything (s e l f) :
16 p r i n t ("trying to be nasty")
17 s e l f . instances = −1

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 35 / 41

Static Variables

1 x = myStatic ()
2 x . nastything ()
3 p r i n t (myStatic .howmany())
4 p r i n t (x .howmany())
5 y = myStatic ()
6 x . nastything ()
7 p r i n t (myStatic .howmany())
8 ======================
9 t r y ing to be nasty

10 1
11 1
12 t r y ing to be nasty
13 2

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 36 / 41

Static Variables

Single Instance

The static methods can be used to create a
singleton object/pattern

They are classes for which there is only one
instance at any given time.

They could be implemented using

1 The class instance could lie in a static variable
2 The method which gets the instance can be

made static.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 36 / 41

Anonymous Classes

Anonymous Classes

New classes could be defined inside
functions and returned.

Such are called anonymous classes

Anonymous classes can also be created
using classobj

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 37 / 41

Anonymous Classes

1 def createclass (name) :
2 class myClass :
3 def i n i t (s e l f) :
4 s e l f .name = name
5 def whoareyou(s e l f) :
6 p r i n t (s e l f .name)
7

8 re turn myClass
9

10 Creator = createclass (’iAmCreator’)
11 f i r s t = Creator ()
12 f i r s t . whoareyou ()
13 ======================
14 p r i n t s iAmCreator as expected .

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 37 / 41

Anonymous Classes

1 from new import classobj
2 class foo :
3 def i n i t (s e l f) :
4 s e l f . x = ’x’
5

6 foo2 = classobj (’foo2’ , (foo ,) ,
7 {’bar’ : lambda s e l f , x : ’got ’ + s t r (x)})
8

9 p r i n t (foo2 () . bar (3))
10 p r i n t (foo2 () . x)
11 ================
12 p r i n t s got2 , x as expected .

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 38 / 41

Anonymous Classes

Meta Classe

Not in the scope of our course.

Creating tailormade classes / customized
ones.

metaclass

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 38 / 41

Anonymous Classes

Some Philosophy?

If you’d like to know some python philosophy,
then you may import the module this

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 39 / 41

Anonymous Classes

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one– and preferably only one –obvious
way to do it.
Although that way may not be obvious at first unless

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 39 / 41

Anonymous Classes

you’re Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good
idea.
Namespaces are one honking great idea – let’s do more
of those!

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 40 / 41

Anonymous Classes

Tab Complete

Getting Tab Complete (like Bash) in python
prompt.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 40 / 41

Problems

1

2 t r y :
3 import readline
4 except ImportEr ror :
5 p r i n t ("Unable to load readline module.")
6 else :
7 import r lcompleter
8 readline . parse and bind ("tab: complete")

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 41 / 41

Problems

Problems

Open an URL (from commandline)

Use HTML parser to parse and filter the links /
Write a re.query

NeverEnding Iterator

Single instance class

Recursive function tracer.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 25, 2010 41 / 41

	Outline
	Opening URLs
	Regular Expressions
	Generators
	Parsing
	Decorators
	Static Variables
	Anonymous Classes
	Problems

