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Truth values

We already saw that empty means FALSE in
python.
The same applies to zero t0o0.
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Some tips and tricks

1 object = ’'sonestring’

N

s if len(object) > 0.
print (C ny_object is not enpty’)

4

5

o if len(object):

7 print (" ny_object is not enpty’ )
8
9

if object ="
10 print (' ny_object is not enpty’)

2 if object:
18 print (" ny_object is not enpty’)
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Functions

We have already seen functions. But only the
simplest forms. We can have functions

m With arguments having default values

m With keywords as arguments

m With multiple arguments.
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1 >>> def myfoo(bar, foobar=True):

2 ... print (bar)

3o, if foobar:

4 . print("ha ha ha!")
5 ..

s >>> myfoo (" hel | 0" )

7 hello

s ha ha ha!

o >>> myfoo("hel | 0" , foobar=False)
0 hello

n >>>
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Default values taken only once

m The default value of the parameter is
initialised only once and it stays the same if
not specifically called. Look at the following
example.
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1 >>> def add(this , tothat=()):

2 ... for e in this:

3o tothat.oppend(e+1)
4 return tothat

6 >>> add((23, 34))

7 (24, 35)

s >>> add((23, 34))

o (24, 35, 24, 35)

0 >>> add((23, 34))

n (24, 35, 24, 35, 24, 35)

2 >>> add((23, 34))

3 (24, 35, 24, 35, 24, 35, 24, 395)
w>>> add((23, 34), (1, 2))

s (1, 2, 24, 35)

6 >>>
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Multiple Arguments

m Functions with a *-ed argument can have
multiple arguemnt.,

m The arguments would be packed in a tuple

m The *-ed argument must follow the other
typed of arguments.
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1 >>> def mularg(i, j, xrest):

2 ... print(i+j)

3o, for k in rest:

4 ... print (k)

5 .

s >>> mularg(1l, 2)

7 3

s >>> mularg(1, 2, 4)

9 3

104

n>>> mularg( hell o, "world ,
12 "this”, 'is’, "cool!’)
13 helloworld

uw this

15i_$

16 cool!

17 >>>
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Docstrings

m Strings surrounded by three quotes at the
beginning of functions could be used for
documentation purposes.

B These sfrings contain newlines in them.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 6/ 31



Some tips and tricks

>>> def simpledoc():
"""This is a sinple hello
worl d program - just to reveal
t he beauty of docstrings"""
print("Hello Wrld")

N O o0 NN =

s >>> Simpledoc. __doc__

9’ This is a sinple hello\n worl d program - |j
0 the beauty of docstrings’

n >>> print simpledoc.__doc__

2 This is a simple hello

13 world program — just to reveal

14 the beauty of docstrings

15 >>> help (simpledoc)

16 .
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With expression

m Files are to be always closed after use.
m A keyword namedw t h

m Using wi t h helps automatic closing of files
after use.
m The object which is used with wi t h must

have the methods - _enter __and _exit __
implemented
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Some tips and tricks

2

3

4+ wWith open(filename) as f:
5 for line in f:

6 print line
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Some tips and tricks

Flatten A List
1 def flatten(e):
2 if not e:
3 return ()
4 if not isinstance(e, list):
5 return (e)
6 return flatten(e(0)) + flatten(e(1:))
7
s def flatten (vl):
9 fl = ()
10 for el in vl:
1 if isinstance(el, list):
12 for e in flatten(el):
13 fl += (e)
14 else: fl += (el)
15 retfurn fl
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String Theory

m The strings in python contains many
methods. One of them is f i nd which returns
the position of a substring

m But if we need only to check if the substring
is present in a big string, we don’t need to
use that. (More readable code)

m split andj oi n: These are two string
methods which are very useful.
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1 >>> sftring = "Hi there’

2 >>> 1f string.find(CH ') = —1:

3o, print (" Success!’ )

4 .
5 Success!
s>>> if "H’' in string:
7 . print (' Success!’)
8 .
s Success!
0 >>>
1 >>> mystr
12 >>> WOords
13 >>> Words
w ("this”, 'is’,’a , 'one’, "two’ , "three’ , "strir
15 >>> '+’ join (words)
16 ' this*i sxaxonextwo*t hreexstring’
17 >>>

"this is a one two three string
mystr.split ()
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Filter, Map and Reduce

func_tool (function, sequence)

m filter: Filter accepts two parameters, one
is a function and the second one @
sequence. It returns a list of the elements of
the sequence for which the function is TRUE.

m map: The returned list would be the results of
applying the function to each member of
the sequence.

m r educe: Initially, the function is applied to
the first two elements of the sequence, and
the result used as the parameter along with
the next elements of the sequence.
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1
> >>> def f(x): return x % 2 '= 0and x % 3 = 0
3
«>>> list (filter (f, range(2. 25)))
s (5, 7, 11, 13, 17, 19, 23)
e >>> def cube(x): return Xsx*Xx
s>>> list (mop(cube, range(1, 11)))
o (1, 8, 27, 64, 125, 216, 343, 512, 729, 1000)
0 >>> seq = range(8)
n>>> def add(x, y): return x+y
12 v
3 >>> list (mop(add, seq, seq))
w (0, 2, 4, 6, 8, 10, 12, 14)
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1 >>> def add(x,y): return x+y

2 .

s >>> from functools import reduce
4+ >>> reduce(add, range(1, 11))

5 55

s >>> def sum(seq):

7. def add(x,y): return x+y

8 ... return reduce(add, seq, 0)

9

0 >>> sum(range (1, 11))
1 55

12 >>> sum(())

13 0
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Functional Tools

In case we need to combine two lists, How do
we do it?
How do we create a dictionary from two lists?
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Functional Tools

1>>> | = (x for x in range(1, 10))
:>>> k = (y for y in range(90, 99))

3 >>> |

(1, 2,3,4,56,6,7, 8,9

5 >>> K

s (90, 91, 92, 93, 94, 95, 96, 97, 98)
7 >>>

g >>>

o>>> |k = ((lI(x), k(x)) for x in range(len(l)))
0 >>> |k

n ((1T, 90), (2, 91), (3, 92), (4, 93). (5, 94),
12 (6, 95), (7, 96), (8, 97), (9, 98))
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Functional Tools

1 >>>
2 >>> |kl = list (zip(l, k))
3 >>> |k

4« (1, 90), (2, 91), B, 92), (4,

5 (6, 95), (7, 96), (8,
6 >>>

7 >>> |kd = dict(lk1)

s >>> |kd

o {1: 90, 2: 91, 3: 92, 4. 93, &:
10 6: 95, 7: 96, 8. 97, 9:
n >>>

93). (&, 94),
97), (9. 98))

94,
981
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Functional Tools

>>> 1t = (5,6,7)
2 >>> d = dict(list (zip(t, range(len(t)))))
3 >>> d

4+ {5 0, 6: 1, 7: 2}

e >>> d = dict(enumerate(t))

7 >>> d
s {0: 5, 1. 6, 2: 7}
9

o>>> d = dict((y.x) for x,y in enumerate(t))
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How does the knight jump 64 in 64
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Regular Expressions Basics

m Alphabets
m Operators: x,+,7,|
m Examples : (0]1)*, a(bc|d)*, a+

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 11/31



In Python

In python, there exists a module for regular
expressions. Here we can see some example
symbols

m . - Stands for any character

m \ w- matches all alphanumeric characters
and "’

m \ W- matches anything which is not \ w
m \ d - matches digits
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Using them

The standard way to use regular expressions in
python is as follows.

m Compile the expression to a pattern object.
m Then the object is maftched against the test.

m If successfully matches, a Match object is
returned, with the relavant information.
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1

» >>> import re

s >>> pattern = re.compile(’ a(a*)b’ )
4a>>> text =’ xyzaaaab3sf’

s >>> matcher = pattern.search(text)
s >>> print (matcher.group ())

7 Qooab

g >>>

9 >>>
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More in next lecture
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Powerful Tools

We saw lambda functions and the other
functional programming methods of python.
They can be used together to have very
powerful routines with simple code.
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1 def add(a,b): return a+b

2

s add2 = lambda a.b: a+b

4

s squares = list (mop(lambda a: axa, (1,2,3.4.,5)))
6
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A lambda function has the syntax: | anbda
vari able(s) : expression
variable(s) | a comma-separated list.
No keywords; No paren-

theses.
expression | python expression.
Scope: local scope

and variable(s).
This is what the function
returns.
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1 >>> foo = (2, 18, 9, 22, 17, 24, 8, 12, 27)

2 >>>

s>>> print(list (filter(ambda x: x % 3 == 0, foo))
4 (18, 9, 24, 12, 27)

5 >>>

s >>> print(list (mop(lambda x: x « 2 + 10, foo)))
7 (14, 46, 28, 54, 44, 58, 26, 34, 64)

g >>>

o >>> print(reduce(lambda x, y: x + y, foo))

0 139

1

12 >>> nums = range(2, 50)

s >>> for i in range(2, 8):

uoL. nums = list (filter (lambda x:

15 X == i or X % i, nums))

16

7 >>> print nums
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e (2, 3, 5,7, 11, 13, 17, 19,
19 23, 29, 31, 37, 41, 43, 47)
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Iterators

lTerators
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lTerators

For loop is used a lot in Python. One can iterate
over almost every type of collection.
How is this made possible?
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Iterators

1 for element in (1, 2, 3):
2 print element

s for element in (1, 2, 3):
4 print element

key in {"one’ :1, "two’ :2}:
6 print key

char in "123":

8 print char

o for line in open("nyfile.txt"):

10 Qrint line

-

o

o
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lTerators

m When for statement is called, a method
i t er is called on the object.

m This refurns an object on which, the method
next is implemented (which can go
through the items)

B next keeps on giving elements, one by one.

m When there are no more elements, an
exception St opl t er at i on is raised. (Loop
stops)
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Iterators

1

2 >>> § = '"abc’
s>>> it = iter(s)
a>>> 0T

s <iterator object at OxO0ATDB50>
e >>> it .next()

7 a
s >>> it .next()
9 ' b’
o >>> it .next()
n'c

2>>> it .next()

1w Traceback (most recent call last):
5 File "<stdin>, line 1, in ?

16 it .nex’r()

17 Stoplteration
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How 1o make Iterable Classes?

To make a collection (personal class) iterable:

m [t needs to have the method _.i ter __
implemented. This is the function which
enablesi t er to be called.

m _iter__should return and object with next
implemented.

m Example below.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 20/ 31



Iterators

class Reverse:

"""Iterator for |ooping over a
sequence backwards"""
def __init__(self, data):
self.data = data
self.index = len(data)
def __iter__(self):
return self
def next(self):
if self.index == O:
raise Stoplteration
self.index = self.index — 1
return self.data(self.index)
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Iterators

1
»>>> for char in Reverse(’ spam ):

3 ... print (char)
4 .
5 M
6 A
e
8 S
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Advantages/Disadvantages

m When we have lterator implemented on an
object, the for loop would not copy the
object. So, especially for large collections,
this is advantageous.

m Troubles: When the list (collection) has to be
changed, an iterator can lead to
catastrophe.

m In case of lists, use slicing. (Example)
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Iterators

| want all the squares upto 121 (not single digit)
and | want also every double digit square + 30.

2 >>> lis = (xxx2 for x in range(4, 12))
3 >>>

4 >>>
s>>> for i in lis:

6 1 if i < 100:

7. lis .append(i+30)
8 ..

9 >>> |is

o (16, 25, 36, 49, 64, 81, 100, 121, 46,
n 85, 66, 79, 94, 111, 76, 85, 96, 109,
2 124, 106, 115, 126)

13 >>>
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Iterators

4 >>>

5 >>> |is = (x*xx2 for x in range(4., 12))
6 >>> for i in lis (:):

17 . i i < 100:

8 ... lis .append(i+30)

19 ...

20 >>> |i$

2 (16, 25, 36, 49, 64, 81, 100, 121, 46,
2 55, 66, 79, 94, 111)

23 >>>
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Applied/Used

m In for slices

m In list comprehensions, for expressions
m inlfoperatorsif x in this

m In almost all the collections.

m More efficient than copying.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010



In Dicts

miter(d) gives an iterator over the keys of
the dict

d.iterkeys
d.iterval ues
d.iteritens

m [ferators over d. keys, d. val ues,
d.itens

m No lists are created.
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Pickle

m Module in python

m Serialisation and de-serialisation of python
objects

m Serialisation : converting to a byte stream.
m The reverse to get the object back.
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Pickling

m Marshalling '

m Serialisation

m Flattening

m Pickling / Unpickling

"Nothing to do with the object Marshal
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cPickle and Marshal

m cPickle is the very same module
implemented in C

m cPickle, yes, it is fast: about 1000 times.

m Pickle keeps track of serialisation and there
is NO repeated serialisation (unlike marshal)

m Shelve (for dictionaries)
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How to Pickle?

m pi ckl e. dunp(obj, file)

m pickle.load(file)

m pi ckl e. dunps(obj)

m pickle.loads(str)
A write permission to the file is required for the
dunp to work. Also, the file should have r ead

and r eadl i ne functions implemented for the
| oad to be functional.
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What All?

m None, True, and False

m infegers, long integers, floating point
numbers, complex numbers

m normal and Unicode strings

m Collections with only picklable objects

m functions defined at the top level of a
module

m built-in functions defined at the top level of
a module

m classes that are defined at the top level of a
module
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1 >>> import pickle

» >>> class Foo:

C atfr = "a class attr’

4 .
s >>> picklestring = pickle.dumps(Foo)
6 >>>
7>>> X = Foo()

s >>> picklestring2 = pickle.dumps(x)
9 >>>

0 >>> picklestring

n ' c__min__\nFoo\npO\n.’

2 >>> picklestring?2

13" (1 __mai n__\nFoo\ npO\ n(dp1\ nb."’

14 >>>

15 >>> y = pickle.loads(picklestring?2)
16 >>>

17 >>> isinstance(y, Foo)
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18 True
19 >>> isinstance(x, Foo)

20 True
21 >>>
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Shelves

m A shelve is a persistent dictionary object in
python

m A dictionary in the secondary storage
m Could be opened and used as needed.

m open and cl ose are the usual methods
needed.
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1 >>> import shelve
»>>> d = shelve.open("nyfile.shel f")

s>>> d("'lala ) =’ booboo

a>>> d(’ kiki’) = nyanya’

s >>> d

¢ {"lala : 'booboo , 'kiki’': 'nyanya' }

7 >>> d(’ xx’) = range(4)

s >>> d

o {"lala . "booboo , "xx’: (0, 1, 2, 3),
10 "ki ki’ ' myamnya’ }

n>>> d.close ()

12 >>>

13 (sadanand@Ixmayr10

4 myfile.shelf.bak myfile.shelf.dat
15 myfile.shelf. dir

16 (sadanand@Ixmayr10

17 >>> import shelve
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8 >>> d = shelve.open("nyfile.shelf")

19 >>> d
o {"kiki’: "myanya’ , 'xx’: (0, 1, 2, 3),
21 "lala’ : ' booboo’ }
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Kiki Booba

Kiki
Booba
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Problems

m BST

m Eval Expression

m Set Operations with lambda/map/filter
m Methods for Order Statistics

m Reversal

m 3 for reversal (string/list)
m Use that to implement r ev functionality of UNIX
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