Some tips and tricks
Functional Tools
Regex

lterators

Pickle

Shelves

E S OBANA

Problems

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 1/31

Truth values

We already saw that empty means FALSE in
python.
The same applies to zero t0o0.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 2/ 31

Some tips and tricks

1 object = ’'sonestring’

N

s if len(object) > 0.
print (C ny_object is not enpty’)

4

5

o if len(object):

7 print (" ny_object is not enpty’)
8
9

if object ="
10 print (' ny_object is not enpty’)

2 if object:
18 print (" ny_object is not enpty’)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 3/31

Functions

We have already seen functions. But only the
simplest forms. We can have functions

m With arguments having default values

m With keywords as arguments

m With multiple arguments.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

1 >>> def myfoo(bar, foobar=True):

2 ... print (bar)

3o, if foobar:

4 . print("ha ha ha!")
5 ..

s >>> myfoo (" hel | 0")

7 hello

s ha ha ha!

o >>> myfoo("hel | 0" , foobar=False)
0 hello

n >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 4/ 31

Default values taken only once

m The default value of the parameter is
initialised only once and it stays the same if
not specifically called. Look at the following
example.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 4/ 31

1 >>> def add(this , tothat=()):

2 ... for e in this:

3o tothat.oppend(e+1)
4 return tothat

6 >>> add((23, 34))

7 (24, 35)

s >>> add((23, 34))

o (24, 35, 24, 35)

0 >>> add((23, 34))

n (24, 35, 24, 35, 24, 35)

2 >>> add((23, 34))

3 (24, 35, 24, 35, 24, 35, 24, 395)
w>>> add((23, 34), (1, 2))

s (1, 2, 24, 35)

6 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 5/31

Multiple Arguments

m Functions with a *-ed argument can have
multiple arguemnt.,

m The arguments would be packed in a tuple

m The *-ed argument must follow the other
typed of arguments.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 5/31

1 >>> def mularg(i, j, xrest):

2 ... print(i+j)

3o, for k in rest:

4 ... print (k)

5 .

s >>> mularg(1l, 2)

7 3

s >>> mularg(1, 2, 4)

9 3

104

n>>> mularg(hell o, "world ,
12 "this”, 'is’, "cool!’)
13 helloworld

uw this

15i_$

16 cool!

17 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

Docstrings

m Strings surrounded by three quotes at the
beginning of functions could be used for
documentation purposes.

B These sfrings contain newlines in them.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 6/ 31

Some tips and tricks

>>> def simpledoc():
"""This is a sinple hello
worl d program - just to reveal
t he beauty of docstrings"""
print("Hello Wrld")

N O o0 NN =

s >>> Simpledoc. __doc__

9’ This is a sinple hello\n worl d program - |j
0 the beauty of docstrings’

n >>> print simpledoc.__doc__

2 This is a simple hello

13 world program — just to reveal

14 the beauty of docstrings

15 >>> help (simpledoc)

16 .

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 7 /31

With expression

m Files are to be always closed after use.
m A keyword namedw t h

m Using wi t h helps automatic closing of files
after use.
m The object which is used with wi t h must

have the methods - _enter __and _exit __
implemented

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 7 /31

Some tips and tricks

2

3

4+ wWith open(filename) as f:
5 for line in f:

6 print line

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 7 /31

Some tips and tricks

Flatten A List
1 def flatten(e):
2 if not e:
3 return ()
4 if not isinstance(e, list):
5 return (e)
6 return flatten(e(0)) + flatten(e(1:))
7
s def flatten (vl):
9 fl = ()
10 for el in vl:
1 if isinstance(el, list):
12 for e in flatten(el):
13 fl += (e)
14 else: fl += (el)
15 retfurn fl

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

String Theory

m The strings in python contains many
methods. One of them is f i nd which returns
the position of a substring

m But if we need only to check if the substring
is present in a big string, we don’t need to
use that. (More readable code)

m split andj oi n: These are two string
methods which are very useful.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 8/31

1 >>> sftring = "Hi there’

2 >>> 1f string.find(CH ') = —1:

3o, print (" Success!’)

4 .
5 Success!
s>>> if "H’' in string:
7 . print (' Success!’)
8 .
s Success!
0 >>>
1 >>> mystr
12 >>> WOords
13 >>> Words
w ("this”, 'is’,’a , 'one’, "two’ , "three’ , "strir
15 >>> '+’ join (words)
16 ' this*i sxaxonextwo*t hreexstring’
17 >>>

"this is a one two three string
mystr.split ()

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 9/ 31

Filter, Map and Reduce

func_tool (function, sequence)

m filter: Filter accepts two parameters, one
is a function and the second one @
sequence. It returns a list of the elements of
the sequence for which the function is TRUE.

m map: The returned list would be the results of
applying the function to each member of
the sequence.

m r educe: Initially, the function is applied to
the first two elements of the sequence, and
the result used as the parameter along with
the next elements of the sequence.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 9/ 31

1
> >>> def f(x): return x % 2 '= 0and x % 3 = 0
3
«>>> list (filter (f, range(2. 25)))
s (5, 7, 11, 13, 17, 19, 23)
e >>> def cube(x): return Xsx*Xx
s>>> list (mop(cube, range(1, 11)))
o (1, 8, 27, 64, 125, 216, 343, 512, 729, 1000)
0 >>> seq = range(8)
n>>> def add(x, y): return x+y
12 v
3 >>> list (mop(add, seq, seq))
w (0, 2, 4, 6, 8, 10, 12, 14)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 9/ 31

1 >>> def add(x,y): return x+y

2 .

s >>> from functools import reduce
4+ >>> reduce(add, range(1, 11))

5 55

s >>> def sum(seq):

7. def add(x,y): return x+y

8 ... return reduce(add, seq, 0)

9

0 >>> sum(range (1, 11))
1 55

12 >>> sum(())

13 0

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

Functional Tools

In case we need to combine two lists, How do
we do it?
How do we create a dictionary from two lists?

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 10/ 31

Functional Tools

1>>> | = (x for x in range(1, 10))
:>>> k = (y for y in range(90, 99))

3 >>> |

(1, 2,3,4,56,6,7, 8,9

5 >>> K

s (90, 91, 92, 93, 94, 95, 96, 97, 98)
7 >>>

g >>>

o>>> |k = ((lI(x), k(x)) for x in range(len(l)))
0 >>> |k

n ((1T, 90), (2, 91), (3, 92), (4, 93). (5, 94),
12 (6, 95), (7, 96), (8, 97), (9, 98))

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 10/ 31

Functional Tools

1 >>>
2 >>> |kl = list (zip(l, k))
3 >>> |k

4« (1, 90), (2, 91), B, 92), (4,

5 (6, 95), (7, 96), (8,
6 >>>

7 >>> |kd = dict(lk1)

s >>> |kd

o {1: 90, 2: 91, 3: 92, 4. 93, &:
10 6: 95, 7: 96, 8. 97, 9:
n >>>

93). (&, 94),
97), (9. 98))

94,
981

Sandeep Sadanandan (TU, Munich)

Python For Fine Programmers

May 27,2010 10/31

Functional Tools

>>> 1t = (5,6,7)
2 >>> d = dict(list (zip(t, range(len(t)))))
3 >>> d

4+ {5 0, 6: 1, 7: 2}

e >>> d = dict(enumerate(t))

7 >>> d
s {0: 5, 1. 6, 2: 7}
9

o>>> d = dict((y.x) for x,y in enumerate(t))

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 10/ 31

How does the knight jump 64 in 64

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 10/ 31

Regular Expressions Basics

m Alphabets
m Operators: x,+,7,|
m Examples : (0]1)*, a(bc|d)*, a+

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 11/31

In Python

In python, there exists a module for regular
expressions. Here we can see some example
symbols

m . - Stands for any character

m \ w- matches all alphanumeric characters
and "’

m \ W- matches anything which is not \ w
m \ d - matches digits

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 12 /31

Using them

The standard way to use regular expressions in
python is as follows.

m Compile the expression to a pattern object.
m Then the object is maftched against the test.

m If successfully matches, a Match object is
returned, with the relavant information.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 13/ 31

1

» >>> import re

s >>> pattern = re.compile(’ a(a*)b’)
4a>>> text =’ xyzaaaab3sf’

s >>> matcher = pattern.search(text)
s >>> print (matcher.group ())

7 Qooab

g >>>

9 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 14/ 31

More in next lecture

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 14/ 31

Powerful Tools

We saw lambda functions and the other
functional programming methods of python.
They can be used together to have very
powerful routines with simple code.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 15/ 31

1 def add(a,b): return a+b

2

s add2 = lambda a.b: a+b

4

s squares = list (mop(lambda a: axa, (1,2,3.4.,5)))
6

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 16/ 31

A lambda function has the syntax: | anbda
vari able(s) : expression
variable(s) | a comma-separated list.
No keywords; No paren-

theses.
expression | python expression.
Scope: local scope

and variable(s).
This is what the function
returns.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

1 >>> foo = (2, 18, 9, 22, 17, 24, 8, 12, 27)

2 >>>

s>>> print(list (filter(ambda x: x % 3 == 0, foo))
4 (18, 9, 24, 12, 27)

5 >>>

s >>> print(list (mop(lambda x: x « 2 + 10, foo)))
7 (14, 46, 28, 54, 44, 58, 26, 34, 64)

g >>>

o >>> print(reduce(lambda x, y: x + y, foo))

0 139

1

12 >>> nums = range(2, 50)

s >>> for i in range(2, 8):

uoL. nums = list (filter (lambda x:

15 X == i or X % i, nums))

16

7 >>> print nums

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

e (2, 3, 5,7, 11, 13, 17, 19,
19 23, 29, 31, 37, 41, 43, 47)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 17 /31

Iterators

lTerators

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

lTerators

For loop is used a lot in Python. One can iterate
over almost every type of collection.
How is this made possible?

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 18/ 31

Iterators

1 for element in (1, 2, 3):
2 print element

s for element in (1, 2, 3):
4 print element

key in {"one’ :1, "two’ :2}:
6 print key

char in "123":

8 print char

o for line in open("nyfile.txt"):

10 Qrint line

-

o

o

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 19/ 31

lTerators

m When for statement is called, a method
i t er is called on the object.

m This refurns an object on which, the method
next is implemented (which can go
through the items)

B next keeps on giving elements, one by one.

m When there are no more elements, an
exception St opl t er at i on is raised. (Loop
stops)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 19/ 31

Iterators

1

2 >>> § = '"abc’
s>>> it = iter(s)
a>>> 0T

s <iterator object at OxO0ATDB50>
e >>> it .next()

7 a
s >>> it .next()
9 ' b’
o >>> it .next()
n'c

2>>> it .next()

1w Traceback (most recent call last):
5 File "<stdin>, line 1, in ?

16 it .nex’r()

17 Stoplteration

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 20/ 31

How 1o make Iterable Classes?

To make a collection (personal class) iterable:

m [t needs to have the method _.i ter __
implemented. This is the function which
enablesi t er to be called.

m _iter__should return and object with next
implemented.

m Example below.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 20/ 31

Iterators

class Reverse:

"""Iterator for |ooping over a
sequence backwards"""
def __init__(self, data):
self.data = data
self.index = len(data)
def __iter__(self):
return self
def next(self):
if self.index == O:
raise Stoplteration
self.index = self.index — 1
return self.data(self.index)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

Iterators

1
»>>> for char in Reverse(’ spam):

3 ... print (char)
4 .
5 M
6 A
e
8 S

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 21/ 31

Advantages/Disadvantages

m When we have lterator implemented on an
object, the for loop would not copy the
object. So, especially for large collections,
this is advantageous.

m Troubles: When the list (collection) has to be
changed, an iterator can lead to
catastrophe.

m In case of lists, use slicing. (Example)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 21/ 31

Iterators

| want all the squares upto 121 (not single digit)
and | want also every double digit square + 30.

2 >>> lis = (xxx2 for x in range(4, 12))
3 >>>

4 >>>
s>>> for i in lis:

6 1 if i < 100:

7. lis .append(i+30)
8 ..

9 >>> |is

o (16, 25, 36, 49, 64, 81, 100, 121, 46,
n 85, 66, 79, 94, 111, 76, 85, 96, 109,
2 124, 106, 115, 126)

13 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

Iterators

4 >>>

5 >>> |is = (x*xx2 for x in range(4., 12))
6 >>> for i in lis (:):

17 . i i < 100:

8 ... lis .append(i+30)

19 ...

20 >>> |i$

2 (16, 25, 36, 49, 64, 81, 100, 121, 46,
2 55, 66, 79, 94, 111)

23 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 22 /31

Applied/Used

m In for slices

m In list comprehensions, for expressions
m inlfoperatorsif x in this

m In almost all the collections.

m More efficient than copying.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

In Dicts

miter(d) gives an iterator over the keys of
the dict

d.iterkeys
d.iterval ues
d.iteritens

m [ferators over d. keys, d. val ues,
d.itens

m No lists are created.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 23/ 31

Pickle

m Module in python

m Serialisation and de-serialisation of python
objects

m Serialisation : converting to a byte stream.
m The reverse to get the object back.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 24/ 31

Pickling

m Marshalling '

m Serialisation

m Flattening

m Pickling / Unpickling

"Nothing to do with the object Marshal

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 25/ 31

cPickle and Marshal

m cPickle is the very same module
implemented in C

m cPickle, yes, it is fast: about 1000 times.

m Pickle keeps track of serialisation and there
is NO repeated serialisation (unlike marshal)

m Shelve (for dictionaries)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 26/ 31

How to Pickle?

m pi ckl e. dunp(obj, file)

m pickle.load(file)

m pi ckl e. dunps(obj)

m pickle.loads(str)
A write permission to the file is required for the
dunp to work. Also, the file should have r ead

and r eadl i ne functions implemented for the
| oad to be functional.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 27/ 31

What All?

m None, True, and False

m infegers, long integers, floating point
numbers, complex numbers

m normal and Unicode strings

m Collections with only picklable objects

m functions defined at the top level of a
module

m built-in functions defined at the top level of
a module

m classes that are defined at the top level of a
module

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 28/ 31

1 >>> import pickle

» >>> class Foo:

C atfr = "a class attr’

4 .
s >>> picklestring = pickle.dumps(Foo)
6 >>>
7>>> X = Foo()

s >>> picklestring2 = pickle.dumps(x)
9 >>>

0 >>> picklestring

n ' c__min__\nFoo\npO\n.’

2 >>> picklestring?2

13" (1 __mai n__\nFoo\ npO\ n(dp1\ nb."’

14 >>>

15 >>> y = pickle.loads(picklestring?2)
16 >>>

17 >>> isinstance(y, Foo)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

18 True
19 >>> isinstance(x, Foo)

20 True
21 >>>

May 27,2010 29 /31

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

Shelves

m A shelve is a persistent dictionary object in
python

m A dictionary in the secondary storage
m Could be opened and used as needed.

m open and cl ose are the usual methods
needed.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 29/ 31

1 >>> import shelve
»>>> d = shelve.open("nyfile.shel f")

s>>> d("'lala) =’ booboo

a>>> d(’ kiki’) = nyanya’

s >>> d

¢ {"lala : 'booboo , 'kiki’': 'nyanya' }

7 >>> d(’ xx’) = range(4)

s >>> d

o {"lala . "booboo , "xx’: (0, 1, 2, 3),
10 "ki ki’ ' myamnya’ }

n>>> d.close ()

12 >>>

13 (sadanand@Ixmayr10

4 myfile.shelf.bak myfile.shelf.dat
15 myfile.shelf. dir

16 (sadanand@Ixmayr10

17 >>> import shelve

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

8 >>> d = shelve.open("nyfile.shelf")

19 >>> d
o {"kiki’: "myanya’ , 'xx’: (0, 1, 2, 3),
21 "lala’ : ' booboo’ }

May 27,2010 30/ 31

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

Kiki Booba

Kiki
Booba

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 30/ 31

Problems

m BST

m Eval Expression

m Set Operations with lambda/map/filter
m Methods for Order Statistics

m Reversal

m 3 for reversal (string/list)
m Use that to implement r ev functionality of UNIX

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 31/31

	Outline
	Some tips and tricks
	Functional Tools
	Regex
	Iterators
	Pickle
	Shelves
	Problems

