Classes

Exceptions

B O

Lambda Functions

Problems

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 1/27

Start with an Example

m Python is object oriented
m Everything is an object
m Every object has somme methods

m There are no private variables/methods in
python (All are public)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 2/27

1 >>> class Complex:

2 ... def __init__(self, realpart, imagpart):
3o self.r = realpart

4 ... self.i = imagpart

5

o >>> X = Complex(3.0, —4.5)
7>>> XL, X.i
. (3.0, —4.5)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 3/27

The Class Definition Syntax

cl ass C assNane:
____ <statenent-1>

<st at enent - N>

m Must be executed first to have any effect. A class
definition can be inside a branch, which never even

gets executed

m Usually the definitions consist of function definitions.
And they have a special list of argument

B A new scope/namespace is created inside

May 27,2010

3/27

Consider the following sample class.

>>> class MyClass:

1

2 """A sinple exanple class"""
3 i = 12345

4 def f(self):

5 return 'hello world’

6

7 >>>

g >>>

o >>> MyClass. i

0 12345

1 >>> MyClass. f
12 <unbound method MyClass. f>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

Calling Class Methods

m A class is defined
B MyC ass. i points fo the variable in the class
m Myd ass. f points fo function

m But we cannot yet call that function as
there is no instance of the class.

m Aninstance can be created by Myd ass()

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 4/27

Look at the following example

>>> class MyClass:
"""A sinple exanple class"""
i = 12345
def f(self):
print ("hello world", self.i)

o N LW N =

6
7 >>> ¢l = MyClass ()

g >>> Cl. i

o 12345

0 >>> Cl.f

11 <pbound method MyClass. f of <__main__.MyClass inst
2 >>> cl.f()

s hello world 12345

14 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 5/27

Classes

m Constructor of a Class

m [T is called first when an instance of the class
is created

m If we want to do something as the first thing,
then this is the place to doit.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 5/27

>>> class Point ():
def __init__(self, x=0,y=0):

self.x = X

self.y =y

def __str__ (self):
return "" . join(("(" ., sftr(self.x), ","
str(self.y), ")"

O L N > O NN —

~—
A

10 ..

1 >>> pointl
12 >>> point2
13 >>>

4 >>> print(pointl)
5 (3.4)

16 >>> print(point2)
17 (0.,0)

Point(3.4)
Point ()

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 6/27

Inheritance

m Base Class which is a common/general
thing
m Derived Class which is specialised stuff

m Derived Class has all the methods of Base -
INHERITANCE

m Base Class variable can keep a Derived
class

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 6/27

Classes

>>> class Class1 (object):

1

2 k =7

3 def __init__(self, color="green’):

4 self.color = color

5

6 def Hellol(self):

7 print("Hello fromd ass1!")

8

9 ... def printColor(self):

0 .. print("l like the color", self.color)
L

2 >>> class Class2(Class1):

13 ... def Hello2(self):

o print("Hello fromd ass2! ")

15 . print(self.k, "is ny favorite nunber")

16

17 >>> cl = Class1(blue’)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 6/27

8 >>> c2 = Class2(red’)
19

20>>> Ccl.Hellol ()

2 Hello from Class1!

2 >>> c2.Hellol ()

23 Hello from Class1!

20 >>>

25

2 >>> C2.Hello2 ()

2 Hello from Class2!

28 / is my favorite number

0 >>> cl.printColor ()

s | like the color blue
2 >>> C2.printColor ()

s | like the color red
34 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

s >>> cl = Class1(yell ow)
s >>> cl.printColor ()

v | like the color yellow
i >>> C2. printColor ()

» | like the color red

40 >>>

41

2>>> if hasattr(Classl, "Hel |l 02"):

B, ern (cl.Hello2 ()
w ... else
5 ... ern ("Cd assl has no Hello2()")

2 Class1 does not contain method Hello2 ()
48

o >>> if issubclass(Class2, Classl):

50 ... print (" YES")

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

s2 YES

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

Overwriting Methods

m The base class has some method
m The subclass implements the same one

m When called, based on which type, the call
goes to the corresponding call

m Example below

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 7/27

>>> class FirstClass:
def setdata(self , value):
self.data = value
def display(self):
print(self.data)

class SecondClass(FirstClass):
def display(self):
print(" Current value ="', self.data)

V .
\/ .
VAR

O o N > NN —

0 ..

n>>> x=FirstClass ()

12 >>> y=SecondClass ()

13 >>> X, setdata("G ve ne the answer")
4 >>> Yy, setdata(42)

15 >>> X, display ()

16 Give me the answer

7 >>> y.display ()

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 7/27

Classes

e Current value = 42

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

Abstract Classes

m Methods in the base class is not
implemented.

m They must be overwritten to be able to use.
m Example below

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 8/27

Mulfiple Inheritance

Multiple inheritance is nothing but deriving from
more than a single base class
cl ass DerivedC ass(Basel, ..., Basen):

The atftributes/methods of base classes would
be searched in a depth-first fashion, starting
from the left most of the base classes.

m First look for the attribute in Base 1

m Then recursively in the base classes of Base
m Then Base2 and so on until found

m Else error

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 9/27

Classes

1 >>>
2 >>>

3 >>>

4+ >>> class my._int(object):

5 ... def __init__(self, val):

6 . self.i = val

7

8 ... def __repr__(self):

9 ... return "[" + str(self.i) + "]"

10 ..

noa. def __str__(self):

2 ... return "I am" + str(self.i)

13 ...

uoL. def __add__(self, another):

15 ... return my_int(self.i + another.i)
16

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

Classes

18

19 ..

20>>> a = my_int(10)
21 >>> b = my_int(14)
22 >>>

23 >>> print ()

22 | am 10

25 >>>

26 >>> D

27 (14)

28 >>>

2 >>> print (a+b)

o | oan 24

31 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 10/ 27

asses

Other Basic Methods

add. _add__ + +=
div. _dadiv_. [[=
~mul . _imul o ox ox=
~sub__ _isub__ - -=
_nmod__ _inmod_. % %

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 10/ 27

Special Methods

Comparison Operators

_eq.. ==
_ge__ >=
_gt__ >
_le__ <=
lt . <
_he__ =

Boolean Operator __nonzer o__ - could be used
to enable the object ready for fruth festing.
LaTeX??

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 11/27

def movedisc(s, d):
d.append(s .pop())

1
2
3
+ def myprint ():

s print msrc, mdst, mimp
6

7

8

9

def toh(src, dst, tmp, n):
if n == 1:
movedisc(src , dst)
10 refurn
n toh(src, tmp, dst, n—1)
2 movedisc(src , dst)
3 toh(tmp, dst, src, n-1)

smsrc = (i+ - for i in range(1, 4))
16 MAst = ()
17 m’rmp = ()

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

8 toh(msrc, mdst, mimp, len(msrc))

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 12 /27

Exceptions

m Exceptions are some kind of error reporfing
tools

m When something unexpected happens, an
exception is raised

B The programmer could decide, what to do
with the error

m Could handle the exception
m Throw/Raise the exception to the caller

m Nice things don’t come for cheap.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 12 /27

1 >>> 10 « (1/0)

» Traceback (most recent call last):

s File "<stdin>", line 1, in ?

4 ZeroDivisionError: integer division or modulo by
s >>> 4+ spamx3

s Traceback (most recent call last):

7 File "<stdin>", line 1, in ?

s NamekError: nome ' spani is not defined

o>>> "2 4+ 2

o Traceback (most recent call last):

it File "<stdin>", line 1, in ?

12 TypeError: cannot concatenate "str’ and 'int’ ob
13 >>> While True print(" Hello world')

uw File "<stdin>, line 1, in ?

15 while True print(’' Hello world')

16

17 SyntaxError: invalid syntax

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 13/27

Handling Them

Firstt ry: then except:
m t ry clause (stuff between the try and
except) is executed.

m If NnO exception occurs, the except is
skipped

m On exception, the rest of t ry is skipped

m If matches the exception specified in except ,
then does the handling as in except
m Else, passes to the higher level

Sandeep Sadanandan (TU, Munich)

Python For Fine Programmers

May 27,2010 13/27

>>> Wwhile True:
try:
X = int(input("A nunber: "))
except ValuekError:
print("Cops! Try again...")

o 0NN =

7 A number: 23

s A number: \\\

o Oops! Try again...
0 A number: 435

11 A number: 45%

2 Oops! Try again. ..
13 A number: sd

14 Oops! Try again. ..

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 13/27

for stuff in our_simple_list:

try:
f = fry_to_.dosomething(stuff)

except A_Grave_Error:

print (" Sonething Terrible Wth’ , stuff)
else:

"""Continue fromTry
print ("Everything fine with", stuff)
go_back_home ()

1
2
3
4
5
6
7
8
9

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 14 /27

When life throws lemons?

When we get exceptions.

m One way is to handle them

m Otherwise, raise them

m The present code stops executing
m And goes back to the caller

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 14 /27

1 >>> while True:

2 .. try:

3o X = int(raw_input(" A nunber: "))
4 ... except ValuekError:a

5 ... print ("OCops! Try again...")

6 .. raise

7 o
s A number: 12

s A number: we

0 Oops! Try again. ..

n Traceback (most recent call last):

2 File "<stdin>", line 3, in <module>

3 ValueError: invalid literal for int() with base
4 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 15/ 27

Clean it up

Python provides with a fi nal | y statement,
which helps to clean up if something went
wrong.

m First do the try part

m Thendothefinally part

m If exception happened, then handle the
correspoding exception, then do the
finally part,

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

1 >>> def divide(x, y):

2 .. fry:

3o result = x /vy

4 ... except ZeroDivisionError:

5 ... print("division by zero!")

6 ... else:

7. print("result is", result)

8 ... finally :

9 ... print("executing finally clause")

10 ..

n>>> divide (2, 1)

2 result is 2

s executing finally clause
1w >>> divide (2, 0)

s division by zero!

16 executing finally clause
17 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 15/ 27

8 >>>

v >>> divide (2", "1")

20 executing finally clause

21 Traceback (most recent call last):

» File "<stdin>", line 1, in ?

s File "<stdin>", line 3, in divide

2 TypeError: unsupported operand type(s) for /: 'st

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 16 /27

Exceptions Are Classes

m Exceptions are classes 100
m One can creat his/her own exceptions

m An exception can be saved in a variable for
further use.

m Example below

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 16 /27

1 >>>
» >>> class MyError(Exception):

3o, def __init__(self, value):
4 ... self.value = value

5 ... def __str__(self):

6 . return repr(self.value)
7

g >>> try:

9 ... raise MyError(2x2)

0 ... except MyError as e:

o print(" My exception, value:’ , e.value)
12 .

s My exception, value: 4

a >>> raise MyError, ' oops!’

15 Traceback (most recent call last):

6 File "<stdin>, line 1, in ?

17 __main__. MyError: ' oops!’

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 16 /27

def arraywithproducts(A):
op (1 for i in range(len(A)))
lp ro = 1
for i in range(len(A)):
j =len(A) — 1 — |
op(i) x= Ip
op(j) = rp
o *= A(i)
o «= A(j)
return op

O o N> NN —

o

1

e array = (1, 2, 3, 4, 5, 6)

13 print(array)

u print (arraywithproducts(array))

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

1
» (sadanand@Ixmayr10 -~ pffp)python < array_products
s (1, 2, 3,4, 5, 6)

4 (720, 360, 240, 180, 144, 120)

s (sadanand@Ixmayr10 =~ pffp)

May 27,2010 16 /27

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

I
def listprod(l, Ist):

1

2 if not Ist: print("Shall not happen")
3 if len(lst) == 1:

4 return ((1), Ist (0))

5 else:

6 a, alst = Ist(0), Ist(1:)

7 sfl =qa *x |

8 blst, r = listprod (sfl , alst)

9 blst = (I = r) + blst

return blst, r x a

o

11
2 print(listprod (1, (1, 2, 3, 4, 5)))
13

e ((120, 60, 40, 30, 24), 120)

15

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

IO - Console

m Oufput: We already have used pri nt
m Command line arguments:; sys. argv[i]

m While the program is running:
There are two methods. They both return a
string which was provided by the user. (By
hitting the RET)

m raw.i nput () : returns the input string

m i nput () : fries to execute the input string.
DANGEROUS: Never use this to get input from
users. One could compromise the system.

NOTE: changed in Python 3.x

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 17 /27

Read/Write Files

m Thereisafil e objectin python. That is
used for the file operations

m One can have a handle to a file by simply
using open(’ fil enane’)
Something similar to the
FILE «fp = fopen("filenane", "r") of C

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 18 /27

1

»>>> f = open(C’ /tnmp/workfile , "w)

3 >>> print(f)

a<open file "/tnp/workfile , mode 'w at 80a0960>
s >>> f.read()

¢« This is the entire file.\n’

7 >>> f.read()

8

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 19/27

10

Where are you?

m All the operations (to see soon) happens,
starting from the present “position” in the
file.

m Every operation changes the position of the
‘cursor’ in the file. (When opening a file, the
seek-position is set to be 0)

m To know where we stand now, usef.tel | ()

m fo move 1o a specific location, use
f.seek(i ndex)

m One has to pay attention to close the files
when it is nomore needed. Otherwise, next
fime it could have a wrong position.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 19/27

Reading files

mf.read() - Gives the text content of the file
pointed to by f

mf.readline() - Gives each line by line from
the file. First call gives the first line, the next
call gives the next line.

mf.readlines() - Gives alist of the lines in
the file.

m One can also directy iterate over the lines in
the file.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 20/ 27

1
2 >>>

f

= open("test.txt")

s >>> f.read()
+'\nThis is a test file\nThis is the second |ine\r

5 >>>
6 69

7 >>>
g >>>
o'\ n’
0 >>>
1" Thi

f

f

f.

S

tell O

.seek(0)
f.

readline ()

readline ()
is atest file\n

2 >>> f.readlines ()

3 (" This is the second line\n", "This is the fina
u>>> f.seek(0)

s >>> for | in f:

print(l)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 20/ 27

19

20 This is a test file

21

» This is the second line
23

24 This is the final line

21/27

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

May 27,2010

Writing

m When one wants to write to a file, then the
open call has to be given specific
parameters.

open(f,
open(f,
open(f,
open(f,
open(f,

‘'w’): Writeable (seek = 0)

‘a’): Would be appended

r+'): Readable and Writeable
r+a’): Readable and Appendable
r'): Readable

m Without a parameter, it is automatically only
readable

m Using f . node one can see the mode of
opening.

Sandeep Sadanandan (TU, Munich)

Python For Fine Programmers May 27,2010 21/27

Writing

mf.wite(string) : Writesfof

mf.witelines(col) : Writeseach member
of the col (some collective object), to the
file

mf.flush() : Writes if really to the file from
the memory. Happens with f . cl ose()
automatically.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 22 /27

m pi ckl e. dunp(x, f) -dumps x to the file

m X = pickle.load(f) -readsfrom the file
fo x

We'll see more of Pickles and Shelves soon.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

23 /27

Lambda functions: what are they

Mini functions.
There are times when we need to write small

functions, perhaps not necessary for a reuse of
anything. Then we use lambda forms.

m Only expressions can be used. No
statements

m No local variables

m Only one expression

May 27,2010 24 /27

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

Lambda Functions

1
> >>> def f(x):

3o, return xxXx

4 .

s >>> print(f(7))

6 49

7>>> g = lambda x : xxX
g >>>

o >>> print(g(7))

10 49

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 24 /27

Lambda Functions

1
2
s >>> def makeincre(n) : return lambda x: x + n
4 .
5 >>>

6 >>> INCr2
7 >>> iNCr9

makeincre (2)
makeincre (9)

g >>>
o >>> print(incr2(10))
10]2

n>>> print(incr9 (10))
12]9

13 >>>

1w >>> add = lambda a, b: o+b
15 >>> add(10, 13)
16 23

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010

To Note

m Variables : A comma separated list of
variables. Not in parens.

m Expression : A normal python expression.

The scope includes both the variables and
the local scope.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 25/27

Feedback on solutions?

How shall | do? A page for it?
Codenames?

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 26 /27

Problems

m Class for chess coins

m A Rational number Class

m Flatten a List

m Create list-number pair (0,23), (1,343), ...

m Class for a Tree (Binary) (not necessarily BST)
m Knight Problems!

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 27,2010 27 /27

	Outline
	Classes
	Exceptions
	IO
	Lambda Functions
	Problems

