Fortgeschrittene Netzwerk- und Graph-Algorithmen

Dr. Hanjo Täubig

Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München

Wintersemester 2009/10

Approximation von Zentralitätsindizes

- Obwohl die behandelten Zentralitätsindizes in polynomieller Zeit berechnet werden können, heißt das nicht unbedingt, dass die entsprechenden Algorithmen in der Praxis anwendbar sind.
- Beispiel:
 Betweenness-Zentralität für die Knoten des Web-Graphen lässt sich selbst mit dem Algorithmus von Brandes nicht in akzeptabler Zeit berechnen.
- ⇒ Möglichst wenige Traversierungen bzw. SSSP-Durchläufe auf dem Graphen
- ⇒ Näherungslösungen mit möglichst geringer Abweichung (mit hoher Wahrscheinlichkeit)

Approximation von Closeness

Closeness:

$$c_C(v) = \frac{1}{\sum_{w \in V} d(v, w)}$$

• Approximation: wähle k andere Knoten $v_1, \ldots, v_k \in V$

$$\hat{c}_C(v) = \frac{k}{n} \frac{1}{\sum_{i=1}^k d(v, v_i)}$$

- Vorgehen (Eppstein / Wang):
 - **1** Wähle k Knoten v_1, \ldots, v_k gleichverteilt zufällig
 - Löse für jeden Knoten v_i das SSSP mit diesem Knoten als Startknoten und
 - 3 berechne für jeden Knoten $v \in V$ die Zentralität

$$\hat{c}_C(v) = \frac{k}{n \cdot \sum_{i=1}^k d(v, v_i)}$$

Hoeffdings Ungleichung

Satz (Hoeffdings Ungleichung)

Seien X_1, \ldots, X_k unabhängige Zufallsvariablen mit $a_i \leq X_i \leq b_i$ und $\mu = \mathbb{E}\left[\sum_{i=1}^k X_i/k\right]$ der erwartete Durchschnitt. Dann gilt

$$\Pr\left\{\left|\frac{\sum_{i=1}^{k} X_i}{k} - \mu\right| \ge \xi\right\} \le 2 \cdot e^{-2k^2 \xi^2 / \sum_{i=1}^{k} (b_i - a_i)^2}$$

bzw. im Fall $a_i = a$, $b_i = b$ ($\forall i$)

$$\Pr\left\{\left|\frac{\sum_{i=1}^k X_i}{k} - \mu\right| \ge \xi\right\} \le 2 \cdot e^{-2k\xi^2/(b-a)^2}$$

Setze

$$X_{i} = n \cdot \frac{d(v_{i}, u)}{n - 1}$$

$$\mu = \frac{1}{c_{C}(v)}$$

$$a_{i} = 0$$

$$b_{i} = \frac{n \cdot \operatorname{diam}(G)}{n - 1}$$

$$\Pr\left\{\left|\frac{\sum_{i=1}^{k} X_i}{k} - \mu\right| \ge \xi\right\} \le 2 \cdot e^{-2k^2 \xi^2 / \sum_{i=1}^{k} (b_i - a_i)^2}$$

$$= 2 \cdot e^{-2k^2 \xi^2 / \left(k\left(\frac{n \cdot \operatorname{diam}(G)}{n-1}\right)^2\right)}$$

$$= 2 \cdot e^{-\Omega\left(k\xi^2 / \operatorname{diam}(G)^2\right)}$$

- Wähle $\xi = \epsilon \cdot \mathsf{diam}(G)$
- $k = \Theta\left(\frac{\log n}{\epsilon^2}\right)$ SSSP-Läufe
- \Rightarrow Wahrscheinlichkeit, einen Fehler größer als $\epsilon \cdot \text{diam}(G)$ zu machen ist höchstens $\frac{1}{n}$ für jeden Wert

Laufzeit der Closeness-Approximation

- Komplexität eines SSSP-Laufs
 - $\mathcal{O}(m+n)$ in ungewichteten Graphen
 - $\mathcal{O}(m + n \log n)$ in gewichteten Graphen
- Komplexität von k SSSP-Läufen
 - $\mathcal{O}(k \cdot (m+n))$ in ungewichteten Graphen
 - $\mathcal{O}(k \cdot (m + n \log n))$ in gewichteten Graphen
- \Rightarrow Komplexität von $\Theta\left(\frac{\log n}{\epsilon^2}\right)$ SSSP-Läufen
 - $\mathcal{O}\left(\frac{\log n}{\epsilon^2} \cdot (m+n)\right)$ in ungewichteten Graphen $\mathcal{O}\left(\frac{\log n}{\epsilon^2} \cdot (m+n\log n)\right)$ in gewichteten Graphen

Approximation von Betweenness

- gewichtete gerichtete Graphen
- wähle wieder k Knoten zufällig (gleichverteilt) aus
- Berechne für jeden Startknoten v_i die totalen Abhängigkeiten $\delta_{v_i*}(v)$ aller anderen Knoten v
- Berechne

$$\hat{c}_B(v) = \sum_{i=1}^k \frac{n}{k} \cdot \delta_{v_i*}(v)$$

• $\mathbb{E}[\hat{c}_B(v)] = c_B(v)$ für alle k und v

Setze

$$X_i = n \cdot \delta_{v_i*}$$

$$\mu = c_B(v)$$

$$a_i = 0$$

$$b_i = n(n-2)$$

 δ_{v_i*} kann höchstens n-2 sein, und zwar wenn alle kürzesten Pfade, die von v_i ausgehen, über v laufen. Also ist X_i durch n(n-2) begrenzt.

$$\Pr\{|\hat{c}_B(v) - c_B(v)| \ge \xi\} \le 2 \cdot e^{-2k^2\xi^2/\sum_{i=1}^k (b_i - a_i)^2}$$

$$= 2 \cdot e^{-2k^2\xi^2/\left(k(n(n-2))^2\right)}$$

$$= 2 \cdot e^{-2k\xi^2/(n(n-2))^2}$$

- Wähle $\xi = \epsilon \cdot n(n-2)$
- $k = \Theta\left(\frac{\log n}{\epsilon^2}\right)$ Startknoten / Läufe
- \Rightarrow Wahrscheinlichkeit, einen Fehler größer als $\epsilon \cdot n(n-2)$ zu machen ist höchstens $\frac{1}{n}$ für jeden Wert

Laufzeit der Betweenness-Approximation

- Komplexität eines Laufs (für $\delta_{v_{i*}}(v)$)
 - $\mathcal{O}(m+n)$ in ungewichteten Graphen
 - $\mathcal{O}(m + n \log n)$ in gewichteten Graphen
- Komplexität von k Läufen
 - $\mathcal{O}(k \cdot (m+n))$ in ungewichteten Graphen
 - $\mathcal{O}(k \cdot (m + n \log n))$ in gewichteten Graphen
- \Rightarrow Komplexität von $\Theta\left(\frac{\log n}{\epsilon^2}\right)$ Läufen

 - $\mathcal{O}\left(\frac{\log n}{\epsilon^2}\cdot (m+n)\right)$ in ungewichteten Graphen $\mathcal{O}\left(\frac{\log n}{\epsilon^2}\cdot (m+n\log n)\right)$ in gewichteten Graphen

Ergebnis

• Gewinn: k anstatt n SSSP-artige Läufe

 Verfahren des normalisierten Durchschnitts basierend auf zufälligem Knoten-Sampling läßt sich auf viele andere Zentralitäten übertragen