
1 Iterators

2 Generators

3 Socket Programming

4 Zero Knowledge Proofs

5 Problems

6 Forward

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 1 / 22

Iterators

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 2 / 22

Iterators

For loop is used a lot in Python. One can iterate
over almost every type of collection.
How is this made possible?

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 3 / 22

1 f o r element in [1 , 2 , 3] :
2 p r i n t element
3 f o r element in (1 , 2 , 3) :
4 p r i n t element
5 f o r key in {’one’ : 1 , ’two’ : 2 } :
6 p r i n t key
7 f o r char in "123" :
8 p r i n t char
9 f o r l i n e in open("myfile.txt") :

10 p r i n t l i n e

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 4 / 22

Iterators

When for statement is called, a method
iter is called on the object.

This returns an object on which, the method
next is implemented (which can go
through the items)

next keeps on giving elements, one by one.

When there are no more elements, an
exception StopIteration is raised. (Loop
stops)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 4 / 22

1

2 >>> s = ’abc’
3 >>> i t = i t e r (s)
4 >>> i t
5 < i t e r a t o r object at 0x00A1DB50>
6 >>> i t . next ()
7 ’a’
8 >>> i t . next ()
9 ’b’

10 >>> i t . next ()
11 ’c’
12 >>> i t . next ()
13

14 Traceback (most recent ca l l l a s t) :
15 F i l e "<stdin>" , l i n e 1 , in ?
16 i t . next ()
17 StopI te rat ion

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 5 / 22

How to make Iterable Classes?

To make a collection (personal class) iterable:

It needs to have the method iter
implemented. This is the function which
enables iter to be called.

iter should return and object with next
implemented.

Example below.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 5 / 22

1

2 class Reverse :
3 """Iterator for looping over a
4 sequence backwards"""
5 def i n i t (s e l f , data) :
6 s e l f . data = data
7 s e l f . index = len (data)
8 def i t e r (s e l f) :
9 re tu rn s e l f

10 def next (s e l f) :
11 i f s e l f . index == 0:
12 ra i se StopI te rat ion
13 s e l f . index = s e l f . index − 1
14 re tu rn s e l f . data[s e l f . index]

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 5 / 22

1

2 >>> f o r char in Reverse (’spam’) :
3 . . . p r i n t char
4 . . .
5 m
6 a
7 p
8 s

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 6 / 22

Advantages/Disadvantages

When we have Iterator implemented on an
object, the for loop would not copy the
object. So, especially for large collections,
this is advantageous.

Troubles: When the list (collection) has to be
changed, an iterator can lead to
catastrophe.

In case of lists, use slicing. (Example)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 6 / 22

I want all the squares upto 121 (not single digit)
and I want also every double digit square + 30.

1

2 >>> l i s = [x∗∗2 f o r x in range (4 , 12)]
3 >>>

4 >>>

5 >>> f o r i in l i s :
6 . . . i f i < 100:
7 . . . l i s .append(i +30)
8 . . .
9 >>> l i s

10 [16 , 25 , 36 , 49 , 64 , 81 , 100 , 121 , 46 ,
11 55 , 66 , 79 , 94 , 111 , 76 , 85 , 96 , 109 ,
12 124 , 106 , 115 , 126]
13 >>>

14 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 6 / 22

15 >>> l i s = [x∗∗2 f o r x in range (4 , 12)]
16 >>> f o r i in l i s [:] :
17 . . . i f i < 100:
18 . . . l i s .append(i +30)
19 . . .
20 >>> l i s
21 [16 , 25 , 36 , 49 , 64 , 81 , 100 , 121 , 46 ,
22 55 , 66 , 79 , 94 , 111]
23 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 7 / 22

Applied/Used

In for slices

In list comprehensions, for expressions

in If operators if x in this

In almost all the collections.

More efficient than copying.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 7 / 22

In Dicts

iter(d) gives an iterator over the keys of
the dict

1 d.iterkeys
2 d.itervalues
3 d.iteritems

Iterators over d.keys, d.values,
d.items

No lists are created.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 8 / 22

Generators

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 9 / 22

Generators

Iterator creators (So to speak)

Regular functions which return without
returning.

Uses yield statement

Each call of next resumes from where it left
off.

State/Data values stored

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 10 / 22

1

2 def reverse (data) :
3 f o r index in range (len (data)−1, −1, −1):
4 y ie ld data[index]
5

6 >>> f o r char in reverse (’golf’) :
7 . . . p r i n t char
8 . . .
9 f

10 l
11 o
12 g

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 11 / 22

Generators ...

Generators are the equivalent of class
based Iterators

iter and next are created
automatically

Saving the vales makes it easier. No need to
separate initialization/storage of index.

Automatic raising of Exception on
termination.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 11 / 22

Simulating Generators

Can be simulated with normal functions.
1 Start with an empty list.
2 Fill in the list instead of the yield statement
3 Then return an iterator of the list
4 Same result

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 12 / 22

1

2 def r (data) :
3 f o r index in range (len (data)−1, −1, −1):
4 y ie ld data[index]
5

6

7 def r S (data) :
8 l i s t = []
9 f o r index in range (len (data)−1, −1, −1):

10 l i s t .append(data[index])
11 re tu rn i t e r (l i s t)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 12 / 22

1

2 >>> import gs
3 >>> f o r x in gs . r (’this is cool’) :
4 . . . p r i n t x ,
5 . . .
6 l o o c s i s i h t
7 >>> f o r x in gs . r S (’this is cool’) :
8 . . . p r i n t x ,
9 . . .

10 l o o c s i s i h t
11 >>>

12 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 13 / 22

Socket Programming

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 13 / 22

Sockets

API for inter process communication

An integer, a thing called socket and
methods for the same

Different machines/processes

Berkely

In python as well

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 14 / 22

Server

1 create a socket
2 bind the socket to an address and port
3 listen for incoming connections
4 wait for clients
5 accept a client
6 send and receive data

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 15 / 22

1

2 import socket
3

4 host = ’’
5 port = 50000
6 backlog = 5
7 s i z e = 1024
8 s = socket . socket (socket . AF INET ,
9 socket . SOCK STREAM)

10 s . bind ((host , port))
11 s . l i s t e n (backlog)
12 while 1:
13 cl ient , address = s . accept ()
14 data = c l i e n t . recv (s i z e)
15 i f data :
16 c l i e n t . send(data)
17 c l i e n t . close ()

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 16 / 22

Client

1 create a socket
2 connect to the server
3 send and receive data

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 16 / 22

1 import socket
2

3 host = ’localhost’
4 port = 50000
5 s i z e = 1024
6 s = socket . socket (socket . AF INET ,
7 socket . SOCK STREAM)
8 s . connect ((host , port))
9 s . send(’Hello, world’)

10 data = s . recv (s i z e)
11 s . close ()
12 p r i n t ’Received:’ , data
13 −−−−−−−−
14 [sadanand@lxmayr10 \@ ˜] python c l i e n t . py
15 Received : Hel lo , world
16 [sadanand@lxmayr10 \@ ˜]

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 17 / 22

To Note

In recv, one might not get all the data from
the server in a single go. In such a case, a
loop until data received in None is advised.

If the server dies, then the client will hang
(almost) (as good as)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 17 / 22

A word about sockets

Blocking Sockets: The socket is blocked until
the request is satisfied. When the remote
system writes on to it, the operation is
complated and execution resumes.

Non Blocking Sockets: Error conditions are to
be handled properly. Doesn’t wait for the
remote system. It will be informed.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 18 / 22

Zero Knowledge Proofs

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 19 / 22

Graphs

Hamiltonian Path/Cycle

Graph Isomorphism

Going in the Cave

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 20 / 22

Problems

Small client for HTTP

Implement check-for-hamiltonian

Infinite Iterator on a list

..

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 21 / 22

Forward

Static methods

Decorators

Threading

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 22 / 22

	Outline
	Iterators
	Generators
	Socket Programming
	Zero Knowledge Proofs
	Problems
	Forward

