ﬂ lterators

Q Generators

a Socket Programming
@ Zero Knowledge Proofs
@ Problems

@ Forward

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 1/22

ltTerators

o) - = DA
Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

ltTerators

For loop is used a lot in Python. One can iterate
over almost every type of collection.
How is this made possible?

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 3/22

for element in (1, 2, 3):

print element

element in (1, 2, 3):

print element

key in {"one’ :1, "two’ :2}:

print key

char in "123":

print char

or line in open("nyfile.txt"):
print line

o

O © N O O N W N =
(o] o
- -

o

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 4/22

ltTerators

@ When for statement is called, a method
i t er is called on the object.

@ This returns an object on which, the method
next is implemented (which can go
through the items)

@ next keeps on giving elements, one by one.

@ When there are no more elements, an
exception St opl t er ati on is raised. (Loop
stops)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 4/22

1

s <iterator object at 0xO0A1DB50>

2>>> § = " abc’
3>>> it =
a>>> it

e >>> it .next()
7 a

s >>> it .next()
o' b’

o >>> it .next()
n'c

2 >>> it .next()

13

1w Traceback (most recent call
"<stdi n>",

15 File
16 it.

17 Stoplteration

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

next ()

iter(s)

July 2, 2009

5/22

How to make Iterable Classes?

To make a collection (personal class) iterable:

@ It needs to have the method _i ter __
implemented. This is the function which
enablesi t er to be called.

@ _iter__shouldreturn and object with next
implemented.

@ Example below.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 5/22

class Reverse:
"""Iterator for |ooping over a
sequence backwar ds
def

__init__(self, data):
self.data = data
self.index = len(data)
__iter__(self):
return self
next(self):
if self.index == 0:

raise Stoplteration
self.index = self.index — 1
return self.data(self.index)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009

5/22

1

» >>> for char in Reverse(’ spami):
3o, print char

4 ...
5 M
6 A
g
8 S

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

Advantages/Disadvantages

@ When we have lterator implemented on an
object, the for loop would not copy the
object. So, especially for large collections,
this is advantageous.

@ Troubles: When the list (collection) has to be
changed, an iterator can lead to
catastrophe.

@ In case of lists, use slicing. (Example)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 6/22

| want all the squares upto 121 (noft single digit)
and | want also every double digit square + 30.

2 >>> lis = (xxx2 for x in range(4, 12))
3 >>>

4 >>>
s>>> for i in lis:

6 1 if i < 100:

7. lis .append(i+30)
8 ..

9 >>> |is

o (16, 25, 36, 49, 64, 81, 100, 121, 46,
n 95, 66, 79, 94, 111, 76, 85, 96, 109,
2 124, 106, 115, 1206)

13 >>>

14 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 6/22

s>>> |lis = (xxx2 for x in range(4, 12))
6 >>> for i in lis (:):

17 . i i < 100:

18 .. lis .append(i+30)

19

20 >>> |i§

a (16, 25, 36, 49, 64, 81, 100, 121, 46,
2 55, 66, 79, 94, 111)

23 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 7/22

Applied/Used

In for slices

In list comprehensions, for expressions
inIf operatorsif x in this

In almost all the collections.

More efficient than copying.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 7/22

In Dicts

@ i ter(d) gives an iterator over the keys of
the dict

g d.iterkeys
d.iterval ues
Q d.iteritens

@ Iterafors over d. keys, d. val ues,
d.itens

@ No lists are created.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 8/22

Generators

o) - = DA
Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

Generators

@ Iterator creators (So to speak)

@ Regular functions which return without
returning.

@ Usesyi el d statement

@ Each call of next resumes from where it left
off.

@ State/Data values stored

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 10/ 22

> def reverse(data):

3 for index in range(len(data)-1, -1, —1):
4 yield data(index)

5

s >>> for char in reverse(’ golf’):

7 . print char

8 ..

o f

0|

n o

12 g

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 11/22

Generators ...

@ Generators are the equivalent of class
based Iterators

@ _iter__andnext are created
automatically

@ Saving the vales makes it easier. No need to
separate initialization/storage of index.

@ Automatic raising of Exception on
tfermination.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 11/22

Simulating Generators

@ Can be simulated with normal functions.

@ Start with an empty list.
Fill in the list instead of the yi el d statement
Then return an iterator of the list
Same result

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 12 /22

def r(data):

1

2

3 for index in range(len(data)-1, -1, —1):
4 yield data(index)

5

6

; def rS(data):

8 _list = ()

9 for index in range(len(data)—-1, -1, —1):
10 _list .append(data(index))

" return iter(_list)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 12 /22

2 >>> import gs
s>>> for x in gs.rCthis is cool’):

4. print x,

5 v

sl OO C S i s i ht

7 >>> for x_ul gs rSCthis is cool’):
8 nt

9

wl O0C S s i ht

n >>>

2 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 13/22

Socket Programming

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

Sockets

@ API for inter process communication

@ An infeger, a thing called socket and
methods for the same

@ Different machines/processes
@ Berkely
@ In python as well

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 14 /22

Server

create a socket

bind the socket to an address and port
listen for incoming connections

wait for clients

accept a client

send and receive data

000000

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 15/22

1
> import socket

3

4 host ="

s port = 50000

s backlog = 5

7 size = 1024

s S = socket.socket(socket. AF_INET,

9 socket.SOCK_STREAM)

0 §.bind((host,port))
n s.listen (backlog)

2 while 1:

13 client , address = s.accept()
14 data = client.recv(size)

15 if data:

16 client.send(data)

17 client.close ()

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009

16 /22

Client

@ create asocket
@ connect to the server
@ send and receive data

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 16 /22

import socket

host = ' | ocal host’
port = 50000
= 1024

s = socket.socket(socket. AF_INET,
socket.SOCK_STREAM)
s.connect((host ,port))
s.send(’ Hel l o, world')
o data = s.recv(size)
n s.close()
2 print ' Recei ved:’ , data

1
2
3
4
5 Size
6
7
8
9

6B ———

12 (sadanand@lxmayr10 \@ ~“)python client.py
15 Received: Hello, world

16 (sadanand@Ixmayr1i0 \@)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009

17 /22

To Note

@ Inrecv, one might not get all the data from
the server in a single go. In such a case, a
loop until data received in None is advised.

@ If the server dies, then the client will hang
(almost) (as good as)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 17 /22

A word about sockets

@ Blocking Sockets: The socket is blocked until
the request is safisfied. When the remote
system writes on to it, the operation is
complated and execution resumes.

@ Non Blocking Sockets: Error conditions are to
e handled properly. Doesn’t wait for the
remote system. It will be informed.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 18 /22

/Zero Knowledge Proofs

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

Graphs

@ Hamiltonian Path/Cycle
@ Graph Isomorphism
@ Going in the Cave

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 20/ 22

Problems

@ Small client for HTTP

@ Implement check-for-hamiltonian
@ Infinite Iterator on a list

@

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 21/22

Forward

@ Static methods
@ Decorators
@ Threading

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 22/22

	Outline
	Iterators
	Generators
	Socket Programming
	Zero Knowledge Proofs
	Problems
	Forward

