
1 Iterators

2 Generators

3 Socket Programming

4 Zero Knowledge Proofs

5 Problems

6 Forward

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 1 / 22



Iterators

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 2 / 22



Iterators

For loop is used a lot in Python. One can iterate
over almost every type of collection.
How is this made possible?
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1 f o r element in [1 , 2 , 3 ] :
2 p r i n t element
3 f o r element in (1 , 2 , 3 ) :
4 p r i n t element
5 f o r key in {’one’ : 1 , ’two’ : 2 } :
6 p r i n t key
7 f o r char in "123" :
8 p r i n t char
9 f o r l i n e in open("myfile.txt" ) :

10 p r i n t l i n e
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Iterators

When for statement is called, a method
iter is called on the object.

This returns an object on which, the method
next is implemented (which can go
through the items)

next keeps on giving elements, one by one.

When there are no more elements, an
exception StopIteration is raised. (Loop
stops)
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1

2 >>> s = ’abc’
3 >>> i t = i t e r ( s )
4 >>> i t
5 < i t e r a t o r object at 0x00A1DB50>
6 >>> i t . next ( )
7 ’a’
8 >>> i t . next ( )
9 ’b’

10 >>> i t . next ( )
11 ’c’
12 >>> i t . next ( )
13

14 Traceback (most recent ca l l l a s t ) :
15 F i l e "<stdin>" , l i n e 1 , in ?
16 i t . next ( )
17 StopI te rat ion
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How to make Iterable Classes?

To make a collection (personal class) iterable:

It needs to have the method iter
implemented. This is the function which
enables iter to be called.

iter should return and object with next
implemented.

Example below.
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1

2 class Reverse :
3 """Iterator for looping over a
4 sequence backwards"""
5 def i n i t ( s e l f , data ) :
6 s e l f . data = data
7 s e l f . index = len (data)
8 def i t e r ( s e l f ) :
9 re tu rn s e l f

10 def next ( s e l f ) :
11 i f s e l f . index == 0:
12 ra i se StopI te rat ion
13 s e l f . index = s e l f . index − 1
14 re tu rn s e l f . data[ s e l f . index ]
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1

2 >>> f o r char in Reverse (’spam’ ) :
3 . . . p r i n t char
4 . . .
5 m
6 a
7 p
8 s
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Advantages/Disadvantages

When we have Iterator implemented on an
object, the for loop would not copy the
object. So, especially for large collections,
this is advantageous.

Troubles: When the list (collection) has to be
changed, an iterator can lead to
catastrophe.

In case of lists, use slicing. (Example)
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I want all the squares upto 121 (not single digit)
and I want also every double digit square + 30.

1

2 >>> l i s = [ x∗∗2 f o r x in range (4 , 12)]
3 >>>

4 >>>

5 >>> f o r i in l i s :
6 . . . i f i < 100:
7 . . . l i s .append( i +30)
8 . . .
9 >>> l i s

10 [16 , 25 , 36 , 49 , 64 , 81 , 100 , 121 , 46 ,
11 55 , 66 , 79 , 94 , 111 , 76 , 85 , 96 , 109 ,
12 124 , 106 , 115 , 126]
13 >>>

14 >>>
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15 >>> l i s = [ x∗∗2 f o r x in range (4 , 12)]
16 >>> f o r i in l i s [ : ] :
17 . . . i f i < 100:
18 . . . l i s .append( i +30)
19 . . .
20 >>> l i s
21 [16 , 25 , 36 , 49 , 64 , 81 , 100 , 121 , 46 ,
22 55 , 66 , 79 , 94 , 111]
23 >>>
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Applied/Used

In for slices

In list comprehensions, for expressions

in If operators if x in this

In almost all the collections.

More efficient than copying.
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In Dicts

iter(d) gives an iterator over the keys of
the dict

1 d.iterkeys
2 d.itervalues
3 d.iteritems

Iterators over d.keys, d.values,
d.items

No lists are created.
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Generators

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 2, 2009 9 / 22



Generators

Iterator creators (So to speak)

Regular functions which return without
returning.

Uses yield statement

Each call of next resumes from where it left
off.

State/Data values stored
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1

2 def reverse (data ) :
3 f o r index in range ( len (data)−1, −1, −1):
4 y ie ld data[ index ]
5

6 >>> f o r char in reverse (’golf’ ) :
7 . . . p r i n t char
8 . . .
9 f

10 l
11 o
12 g
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Generators ...

Generators are the equivalent of class
based Iterators

iter and next are created
automatically

Saving the vales makes it easier. No need to
separate initialization/storage of index.

Automatic raising of Exception on
termination.
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Simulating Generators

Can be simulated with normal functions.
1 Start with an empty list.
2 Fill in the list instead of the yield statement
3 Then return an iterator of the list
4 Same result
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1

2 def r (data ) :
3 f o r index in range ( len (data)−1, −1, −1):
4 y ie ld data[ index ]
5

6

7 def r S (data ) :
8 l i s t = [ ]
9 f o r index in range ( len (data)−1, −1, −1):

10 l i s t .append(data[ index ] )
11 re tu rn i t e r ( l i s t )
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1

2 >>> import gs
3 >>> f o r x in gs . r (’this is cool’ ) :
4 . . . p r i n t x ,
5 . . .
6 l o o c s i s i h t
7 >>> f o r x in gs . r S (’this is cool’ ) :
8 . . . p r i n t x ,
9 . . .

10 l o o c s i s i h t
11 >>>

12 >>>
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Socket Programming
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Sockets

API for inter process communication

An integer, a thing called socket and
methods for the same

Different machines/processes

Berkely

In python as well
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Server

1 create a socket
2 bind the socket to an address and port
3 listen for incoming connections
4 wait for clients
5 accept a client
6 send and receive data
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1

2 import socket
3

4 host = ’’
5 port = 50000
6 backlog = 5
7 s i z e = 1024
8 s = socket . socket ( socket . AF INET ,
9 socket . SOCK STREAM)

10 s . bind ( ( host , port ) )
11 s . l i s t e n (backlog )
12 while 1:
13 cl ient , address = s . accept ( )
14 data = c l i e n t . recv ( s i z e )
15 i f data :
16 c l i e n t . send(data)
17 c l i e n t . close ( )
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Client

1 create a socket
2 connect to the server
3 send and receive data
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1 import socket
2

3 host = ’localhost’
4 port = 50000
5 s i z e = 1024
6 s = socket . socket ( socket . AF INET ,
7 socket . SOCK STREAM)
8 s . connect ( ( host , port ) )
9 s . send(’Hello, world’ )

10 data = s . recv ( s i z e )
11 s . close ( )
12 p r i n t ’Received:’ , data
13 −−−−−−−−
14 [ sadanand@lxmayr10 \@ ˜ ] python c l i e n t . py
15 Received : Hel lo , world
16 [ sadanand@lxmayr10 \@ ˜ ]
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To Note

In recv, one might not get all the data from
the server in a single go. In such a case, a
loop until data received in None is advised.

If the server dies, then the client will hang
(almost) (as good as)
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A word about sockets

Blocking Sockets: The socket is blocked until
the request is satisfied. When the remote
system writes on to it, the operation is
complated and execution resumes.

Non Blocking Sockets: Error conditions are to
be handled properly. Doesn’t wait for the
remote system. It will be informed.
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Zero Knowledge Proofs
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Graphs

Hamiltonian Path/Cycle

Graph Isomorphism

Going in the Cave
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Problems

Small client for HTTP

Implement check-for-hamiltonian

Infinite Iterator on a list

.. . . .. . .
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Forward

Static methods

Decorators

Threading
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