
1 Opening URLs

2 Regular Expressions

3 Look Back

4 Graph Theory

5 Crawler / Spider

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 1 / 14

Opening URLs

The module used for opening URLs is
urllib2

The method used is similar to the file open in
syntax

Returns a handler to the URL, which could
be used as a handle to a file (readlines ,
read etc.)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 2 / 14

1 >>> import u r l l i b 2
2 >>> r = u r l l i b 2 . urlopen (’http://python.org/’)
3 >>> html = r . read(300)
4 >>> p r i n t html
5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
6 Transitional//EN" "http://www.w3.org/TR/xhtml1/
7 DTD/xhtml1-transitional.dtd" >

8

9

10 <html xmlns="http://www.w3.org/1999/xhtml" xml :
11 lang="en" lang="en" >

12

13 <head>

14 <meta http−equiv="content-type"
15 content="text/html; charset=utf-8" />
16 < t i t l e >Python Programming Language −−
17 O f f i c i a l Website</ t i t l e >

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 3 / 14

General Way

Not all urls can be opened this way.

There could be complicated operations
such as communicating with he cgi-bin of
the server; or some ftp server; etc.

For that purpose, there are Requests and
Opener objects

◮ Requests can send along extra data to the
server

◮ Opener can be used for complicated
operations.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 3 / 14

1 >>> from u r l l i b 2 import Request
2 >>> req = Request (’http://www.google.com/’)
3 >>> brwser = ’Mozilla/4.0 (compatible; MSIE 6.0;
4 Windows NT 5.0)’
5 >>> req . add header(’User-Agent’ , brwser)
6 >>> opener = u r l l i b 2 . build opener ()
7 >>> opened = opener .open(req)
8 >>> p r i n t opened. read(150)
9 <!doctype html><head><meta http−equiv=content−typ

10 content="text/html; charset=UTF-8" >< t i t l e >hal lo −
11 Google Search</ t i t l e ><sc r ip t >window. google={ kE I : "
12 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 4 / 14

On Error?

In case of errors, one can use the exception
to show the error messages

Two Exceptions which come handy are
HTTPError and URLError

They have to be used in the same order
when you write the code. Because
HTTPError is a subclass of URLError

See the example below.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 4 / 14

1

2 from u r l l i b 2 import Request , urlopen , URLError , H
3 req = Request (someurl)
4 t r y :
5 response = urlopen (req)
6 except HTTPEr ror , e :
7 p r i n t ’The server didn’ t f u l f i l l the req . ’
8 print ’ E r r o r code: ’, e.code
9 except URLError, e:

10 print ’ We fai led to reach a server . ’
11 print ’ Reason : ’, e.reason
12 else:
13 print ’ everything i s f ine ’

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 5 / 14

Regular Expressions - A recap
What are they?
A means to find out string patters, To match
strings, To find substrings and so forth

When not to use them?
When they are unavoidable. In normal
cases where one needs to check whether a
string is a substring of another, then is could
be easier and more understandable and
perhaps more efficient to use the normal
string methods.

When to use them?
When you know they must be.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 5 / 14

Regular Expressions in Theory

Finite Automata - NFA and DFA, Alphabets

Books on Compilers give a good account of
these

Limitations : (anbn), palindromes

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 6 / 14

Meta Characters
If you want to search for ’’test’’ , then
easy.

What if you don’t know what you want to
search for. For example a telephone
number? (Which you don’t know)

There are some classes of characters which
are dedicated to make the using of regular
expressions possible.

Normal characters match for themselves.
E.g. t matches t .

Some special characters don’t match
themselves.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 7 / 14

. ˆ $ * + ? { [] \ | ()

[and] : These can be used to specify a
class of characters.

[a-z] : stands for all the lowercase
characters. The literal ’-’ has special
meaning inside the square brackets.

[abc$] stands for the characters
’a’, ’b’, ’c’ and the dollar sign.

Even though $ has special meaning in
RE context, but inside [and]

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 7 / 14

ˆ : For negation/complementing a set

[ˆa-z] means everything which is
not lowercase.

\ is perhaps the most important
metacharacter.

It is used when a meta-character
is to be matched.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 7 / 14

\d : Every decimal digit. [0-9]

\D : Everything non-digit; [ˆ0-9]

\s : Any whitespace; [\t\n\r\f\b]

\S : Any nonwhitespace character

\w : Any alpha-numeric; [a-zA-Z0-9_]

\W : Any non-alpha-numeric-character

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 8 / 14

Importance of DOT

The character “.” matches everything but a
newline.
Even that can be done using a different mode
of the RE module, using re.DOTALL

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 8 / 14

Repeating Things

* : ca * t would match ct, cat, caat, caaaat,
...

+ : ca+t would match all of them except for
ct

? : ca?t would match only ct or cat

{m,n} : Minimum m times, maximum n
times.
ca{2,4}t would match caat, caaat and
caaaat. But not anything else.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 9 / 14

Repeating Things

It is easy to see that * is nothing but {0,}

Similarly, + is nothing but {1,} and

? is {0,1}

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 10 / 14

a|b matches a or b.

ˆ, $ match the beginning
and ending of a line.

\A, \Z match the beginning
and end of a string

’\A[abc] * \Z’ matches all strings
which are combinations of a, b and c

\b matches word boundaries:
’class\b’ match ’class next Thursday’
’class\b’ doesn’t match ’classified’

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 10 / 14

a[bcd] * b against ’abcbd’

a The a in the RE matches.

abcbd The engine matches [bcd] * ,
going as far as it can,
which is to the end of the
string.

Failure The engine tries to match b,
but the current position is
at the end of the string,
so it fails.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 10 / 14

abcb Back up, so that [bcd] *
matches one less character.

Failure Try b again, but the current
position is at the last
character, which is a "d".

abc Back up again, so that [bcd] *
is only matching "bc".

abcb Try b again. This time but the
character at the current
position is "b", so it succeeds.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 11 / 14

Using Them

Compile them

Match them

◮ match() : Determine if the re matches the string
◮ search() : Scan and find the matches
◮ findall() : Find all the matches
◮ finditer() : Return and iterator

Use them

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 11 / 14

1 >>> import re
2 >>> p = re . compile (’[a-z]+’)
3 >>> p
4 < s r e . SRE Pattern object at 80c3c28>
5 >>> p.match("")
6 >>> p r i n t p.match("")
7 None
8 >>> m = p.match(’tempo’)
9 >>> p r i n t m

10 < s r e . SRE Match object at 80c4f68>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 12 / 14

Using Them

group() : The string matched

start() : Start of the string

end() : The End of the string

span() : A tuple with (start, end)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 12 / 14

1 >>> m. group ()
2 ’tempo’
3 >>> m. s t a r t () , m.end()
4 (0 , 5)
5 >>> m. span ()
6 (0 , 5)
7 >>> p r i n t p.match(’::: message’)
8 None
9 >>> m = p. search (’::: message’) ; p r i n t m

10 <re . MatchObject instance at 80c9650>

11 >>> m. group ()
12 ’message’
13 >>> m. span ()
14 (4 , 11)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 12 / 14

1 p = re . compile (. . .)
2 m = p.match(’string goes here’)
3 i f m:
4 p r i n t ’Match found: ’ , m. group ()
5 else :
6 p r i n t ’No match’
7 −−
8 >>> p = re . compile (’\d+’)
9 >>> p. f i n d a l l (’12 drummers drumming,

10 11 pipers piping,
11 10 lords a-leaping’)
12 [’12’ , ’11’ , ’10’]
13 −−
14 >>> i t e r a t o r = p. f i n d i t e r (’12 drummers drumming,
15 11 ... 10 ...’)
16 >>> i t e r a t o r
17 <callable− i t e r a t o r object at 0x401833ac>

18 >>> f o r match in i t e r a t o r :

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 12 / 14

19 . . . p r i n t match . span ()
20 . . .
21 (0 , 2)
22 (22 , 24)
23 (29 , 31)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 12 / 14

Tree Deletion

1 def delete (s e l f , item) :
2 i f item < s e l f . data :
3 i f s e l f . l c h i l d :
4 s e l f . l c h i l d = s e l f . l c h i l d . delete (item)
5 e l i f item > s e l f . data :
6 i f s e l f . r ch i l d :
7 s e l f . r ch i l d = s e l f . r ch i l d . delete (item)
8 else :
9 i f s e l f . i s Leaf () :

10 re tu rn None
11 i f s e l f . singleDad () :
12 re tu rn s e l f . singleDad ()
13 lLarge = s e l f . leastLarger ()
14 s e l f . data , lLarge . data = lLarge . data , s e l f .
15 s e l f . r ch i l d = s e l f . r ch i l d . delete (item)
16 re tu rn s e l f

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 12 / 14

Flatten A List

1 def f la t ten (e) :
2 i f not e:
3 re tu rn []
4 i f not i s in s tance (e , l i s t) :
5 re tu rn [e]
6 re tu rn f la t ten (e[0]) + f la t ten (e [1 :])
7 −−
8 def f la t ten (v l) :
9 f l = []

10 f o r el in v l :
11 i f i s in s tance (el , l i s t) :
12 f o r e in f la t ten (e l) :
13 f l += [e]
14 else :
15 f l += [e l]
16 re tu rn f l

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 12 / 14

Flatten A List

1 def reverserec (wh) :
2 i f not wh: re tu rn wh
3 re tu rn reverserec (wh[1 :]) + wh[0]
4

5 def reverserecM (wh) :
6 i f len (wh) == 1: re tu rn wh
7 m = len (wh) / 2
8 re tu rn reverserecM (wh[m:])
9 + reverserecM (wh[:m])

10

11 def reverseStrNotWord(s t r) :
12 wh = s t r . s p l i t ()
13 whr = reverserecM (wh)
14 re tu rn ’ ’ . j o i n (whr)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 13 / 14

Graphs

Nodes

Edges

In Python

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 13 / 14

Crawler/Spider

Open an URL

Write a re.query

Make a graph

Nodes are pages

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers June 5, 2009 14 / 14

	Outline
	Opening URLs
	Regular Expressions
	Look Back
	Graph Theory
	Crawler / Spider

