ﬂ Classes
a Exceptions

a Using Other Code

@ Problems

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

Start with an Example

@ Python is object oriented
@ Everything is an object
@ Every object has some methods

@ There are no private variables/methods in
python (All are public)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 2/19

1 >>> class Complex:

2 ... def __init__(self, realpart, imagpart):
3o self.r = realpart

4 ... self.i = imagpart

5

6>>> x = Complex(3.0, —-4.5)
7>>> X.r, X,
s (3.0, —-4.5)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 3/19

The Class Definition Syntax

cl ass C assNane:
____ <statenent-1>

éstatenﬁnt-hb

@ Must be executed first to have any effect. A class
definition can be inside a branch, which never even

gets executed

@ Usually the definitions consist of function definitions.
And they have a special list of argument

@ A new scope/namespace is created inside
@ Once executed, an object is created

May 16,2009 3/19

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

Consider the following sample class.

>>> class MyClass:

1

2 """A sinple exanple class"""
3 i = 12345

4 def f(self):

5 return ' hello world

6

7 >>>

g >>>

o >>> MyClass. i

0 12345

1 >>> MyClass. f
12 <unbound method MyClass. f>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 4/19

Calling Class Methods

@ A class is defined
@ Myd ass. i points tfo the variable in the class
@ Myd ass. f points to function

@ Butf we cannoft yet call that function as
there is no instance of the class.

@ Aninstance can be created by Myd ass()

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 4/19

Look af the following example

>>> class MyClass:
"""A sinple exanple class"""
i = 12345
def f(self):
print "hello world , self.i

o h w0 N =

6
7>>> ¢l = MyClass ()

g >>> Cl. i

o 12345

0 >>> Cl.f

11 <pbound method MyClass. f of <__main__.MyClass inst
2 >>> cl.f()

13 hello world 12345

a4 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 5/19

init

@ Constructor of a Class

@ It is called first when an instance of the class
is created

@ If we want fo do something as the first thing,
then this is the place to do it.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 5/19

>>> class Point ():

1

2 def __init__(self, x=0,y=0):

3 self .x = X

4 self.y =y

5

6 def __str__ (self):

7 return "" .join(("(", str(self.x), ","
8 str(self.y), ")"
9))

10 ...

1 >>> pointl = Point(3.4)

2 >>> point2 = Point ()

13 >>>

1w >>> print pointl

15 (3.4)

16 >>> print point2

17 (0,0)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 6/19

Inheritance

@ Base Class which is a common/general
thing
@ Derived Class which is specialised stuff

@ Derived Class has all the methods of Base -
INHERITANCE

@ Base Class variable can keep a Derived
class

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 6/19

O © N O O LN =

16
17 >>> Cl
18 >>> C2

>>> class Classl (object):

k =7
def __init__(self, color="green’):
self.color = color

def Hellol(self):
print "Hello from C ass1!"

def printColor(self):
print "I like the color", self.color

12 >>> class Class2(Class1):

def Hello2(self):
print "Hello from Cl ass2!"
print self.k, "is ny favorite nunber”

Class1(blue’)
Class2(' red’)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009

6/19

19

20 >>> Cl.Hellol ()

2 Hello from Class1!

2 >>> c2.Hellol ()

23 Hello from Class1!

20 >>>

25

2 >>> C2.Hello2 ()

27 Hello from Class2!

26 / 18 my favorite number
29

0 >>> cl.printColor ()

s | like the color blue
2 >>> C2.printColor ()

s | like the color red

34 >>>

s >>> cl = Class1(yell ow)
>>> cl.printColor ()

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

May 16,2009

6/19

v | like the color yellow
8 >>> C2.printColor ()

» | like the color red

40 >>>

41

2>>> if hasattr(Classl, "Hell o2"):

B print cl.Hello2()
w ... else:
5o print "C assl has no Hello2()"

46 . .

w Class1 does not contain method Hello2 ()
48

o >>> if issubclass(Class2, Classl):

50 ... print " YES"

51

= VES

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009

7/19

Overwriting Methods

@ The base class has some method

@ The subclass implements the same one

@ When called, based on which type, the call
goes to the corresponding call

@ Example below

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 7/19

>>> class FirstClass:
def setdata(self , value):
self.data = value
def display(self):
print self.data

class SecondClass(FirstClass):
def display(self):
print 'Current value = %' % self.data

V .
\/ -
VAR

O © N O O LN =

0 ..

n>>> x=FirstClass ()

12 >>> y=SecondClass ()

3 >>> X, setdata("G ve ne the answer")
1w >>> Yy, setdata(42)

15 >>> X, display ()

16 Give me the answer

7 >>> y.display ()

8 Current value = 42

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 8/19

Abstract Classes

@ Methods in the base class is not
implemented.

@ They must be overwritten to be able to use.
@ Example below

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 8/19

Multiple Inheritance

Multiple inheritance is nothing but deriving from
more than a single base class
cl ass DerivedC ass(Basel, ..., Basen):

The attributes/methods of base classes would
e searched in a depth-first fashion, starting
from the left most of the base classes.

@ First look for the attribute in Base
@ Then recursively in the base classes of Base
@ Then Base2 and so on until found

@ Else error

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 9/19

1 >>>

2 >>>
3 >>>

4+ >>> class my._int(object):

5 ... def __init__(self, val):

6 . self.i = val

7 0

8 ... def __repr__(self):

9 ... return "[" + str(self.i) + "]"

10 ...

N def __str__(self):

2 ... return "I am" + str(self.i)

13 v

uo. def __add__(self, another):

5 .. return my_int(self.i + another.i)
16

17

18

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 9/19

19

20 >>> d

= my_int(10)
21 >>> b = my_int(14)
2 >>>
23 >>> print a
2 | am 10
25 >>>
26 >>> b
27 (14)
28 >>>
20 >>> print a+b
o | an 24
31 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 10/ 19

Other Basic Methods

cadd__ _Jadd__ + +=
div__ _iadiv_ [[I=

__mJI o mjl _k kx =
_Ssub__ _isub__ - -=
mod__ _inmbd._. % %

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 10/ 19

Special Methods

Comparison Operators

eq.. ==
_ge__ >=
_gt__ >
le <=
St . <
_he__ =

Boolean Operator __nonzer o__ - could be used
to enable the object ready for fruth festing.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 11/19

» def arraywithproducts(A):

3 op = (1 for i in range(len(A)))
4 lp =r1rp =1

5

6 for i in range(len(A)):

7 j =len(A) — 1 — i
8 op(i) = 1Ip

9 op(j) = rp

10 lp *= A(i)

n e x= A(J)

12

13 return op

e array = (1, 2, 3, 4, 5, 6)

17 print array
s print arraywithproducts(array)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 11/19

sadanand@Ixmayr10 -~ pffp)python < array_product:
1. 2,3, 4,5, 6)

720, 360, 240, 180, 144, 120)

sadanand@Ixmayr10 -~ pffp)

(&) 5 w N —
—

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 12/19

Exceptions

@ Exceptions are some kind of error reporting
tools

@ When something unexpected happens, an
exception is raised

@ The programmer could decide, what to do
with the error

» Could handle the exception
» Throw/Raise the exception to the caller

@ Nice things don’t come for cheap.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 12/19

>>> 10 = (1/0)

> Traceback (most recent call last):

s File "<stdin>", line 1, in ?

4 ZeroDivisionError: integer division or modulo by
5 >>> 4 + spamx3

¢ Traceback (most recent call last):

7 File "<stdin>", line 1, in

s NamekError: nome ' spani is not defined

o>>> "2 + 2

0 Traceback (most recent call last):

" File "<stdin>", line 1, in ?

2 TypeError: cannot concatenate "str’ and 'int’ ob

13

1w >>> while True print "Hello worl d’
5 File "<stdin>", line 1, in ?

16 while True print "Hello worl d’
17

8 Syntaxkrror: invalid syntax

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 13/19

Handling Them

Firstt ry: then except:
@ t ry clause (stuff between the fry and
except) is executed.

@ If N0 exception occurs, the except is
skipped

@ On exception, the rest of t ry is skipped

» If matches the exception specified in except ,
then does the handling as in except
» Else, passes to the higher level

Sandeep Sadanandan (TU, Munich)

Python For Fine Programmers May 16, 2009 13/19

>>> while True:
try:
X = int(raw_input(" A nunber: "))
except Valuekrror:
print "Qops! Try again..."

o h LW N =

6

7 A number: 23

¢ A number: \\\

o Oops! Try again...
10 A number: 435

11 A number: 45%

2 Oops! Try again. ..
13 A number: sd

a Oops! Try again. ..

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 13/19

for stuff in our_simple_list:

try:
f = fry_to_.dosomething(stuff)

except A_Grave_Error:

print ' Something Terrible Wth' , stuff
else:

"""Continue fromTry
print "Everything fine with" , stuff
go_back_home ()

1
2
3
4
5
6
7
8
9

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 14/19

When life throws lemons?

When we get exceptions.

@ One way is to handle them

@ Otherwise, raise them

@ The present code stops executing
@ And goes back to the caller

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 14/19

1 >>> while True:

2 ... try:

3o X = int(raw_input(" A nunber: "))
4 ... except ValuekError:

5 ... print "Qops! Try again..."

6 v raise

7 4
s A number: 12

s A number: we

0 Oops! Try again. ..

n Traceback (most recent call last):

2 File "<stdin>", line 3, in <module>

3 ValueError: invalid literal for int () with base

4 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 15/19

Clean it up

Python provides with a fi nal | y statement,
which helps to clean up if something went
wrong.

@ First do the try part
@ Thendothefinal |y part

@ If exception happened, then do the
correspoding exception, then do the
finally part,

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 15/19

1 >>> def divide(x, y):

2 ... fry:

3o result = x /vy

4 ... except ZeroDivisionError:

5 4. print "di vision by zero!"

6 v else:

7. print "result is", result

8 ... finally :

9 ... print "executing finally clause"

10 ...

n>>> divide (2, 1)

2 result is 2

13 executing finally clause
1w >>> divide (2, 0)

15 division by zero!

16 executing finally clause
17 >>>

8 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 15/19

9 >>> divide("2" , "1")

o executing finally clause

21 Traceback (most recent call last):
» File "<stdin>", line 1, in ?

s File "<stdin>", line 3, in divide

2 Typekrror: unsupported operand type(s) for /:

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

May 16, 2009

st

16/19

Exceptions Are Classes

@ Exceptions are classes too
@ One can creat his/her own exceptions

@ An exception can be saved in a variable for
further use.

@ Example below

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 16/ 19

1 >>>
» >>> class MyError(Exception):

3o, def __init__(self, value):
4 ... self.value = value

5 .. def __str__(self):

6 . return repr(self.value)
7 0

g >>> try:

9 ... raise MykError(2x2)

o ... except MyError as e:
o print ' My exception occurred, value:’ , e.

12

13 My exception occurred, value: 4

1w >>> raise MyError, ' oops!’

15 [raceback (most recent call last):
6 File "<stdin>", line 1, in ?

17 __main__. MyError: ’oops!’

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 17 /19

Import Statement

@ No one can write adll the code he/she
needs.

@ No need to re-invent the wheel
@ Use i nport statement of Python
@ Equivalent of #i ncl ude of C

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 17 /19

1 >>> import math

» >>> math.pow (5, 2)

3 25.0

4 >>> math.pow(2, 5)

5 32.0

o« >>> from math import pow
7 >>> pow(3, 4)

s 81.0

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers

May 16, 2009

18/19

Some nice libraries

re Regular expression operations
nunbers Numeric abstract base classes
mat h Mathematical functions

cmat h Functions for complex numbers
deci mal Decimal fixed & floating point math
random Generate pseudo-random numbers

0S Miscellaneous OS interfaces
i o Core tools for streams
tinme Time access and conversions

0os. pat h Common pathname manipulations

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 18/19

@ Class for chess coins

@ A Rational number Class

@ Flaften a List

@ Class for a Tree (Binary) (not necessarily BST)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers May 16, 2009 19/19

	Outline
	Classes
	Exceptions
	Using Other Code
	Problems

