Last Week: Compiler Lemma

@ If (e, m) —an then
(compace, [1, m) —m* ([], [n], m).
@ If (e, m) —ab then

(compb e, [], m) —m* ([], [WRAP b], m).

@ Booleans: TRUE — 1; FALSE — O
@ We had to generalise over all stacks s.
@ We only considered a small subset of the machine.

A Machine

@ ... has a stack, a single register and memory
@ runs a list of instructions
datatype instr =

JMPF "nat" jump forward n steps, if reg. is False
| TMPB "nat" backward n steps
| FETCH "loc" move memory to top of stack
| STORE "loc" pop top of stack to memory
| PUSH "nat" push to stack
| POP stack to register
| SET "nat" set register
| OPU "nat = nat" pop one from stack and apply f

| OPB "nat => nat = nat" pop two from stack and apply f

A Machine

@ Last week we had "linear” programs and therefore
used a simplified machine

inductive
step ("(L_—) —m'(__)")
where
"(PUSH n#p, s, m) —m (p, n#s, m)"
| "(FETCH I#p, s, m) —m (p, m |#s, m)"
| "(OPVU f#p, n#s, m) —m (p, f n#s, m)"
| "(OPB f#p, nl#n2#s, m) —m (p, f n2 nl#s, m)"

@ Behaviour of the “full” machine
inductive
step2 ("(L___) —m'C____)"
where
"(PUSH n#p, q,r, s, m) —m (p, PUSH n#q, r, n#s, m)"
| "(FETCH I#p, q, r, s, m) —m (p, FETCH I#q, r, m I#s, m)"
| "(OPU f#p, q, r, n#s, m) —m (p, OPU f#q, r, f n#s, m)"
| "(OPB f#p, q, r, n1#n2#s, m) —m (p, OPB f#gq, r, f n2 nl#s, m)"
| "(POP#p, q, r, n#ts, m) —m (p, POP#q, n, s, m)"
| "(SET n#p, q,r,s, m) —m (p, SET n#q, n, s, m)"
| "(STORE x#p, q, r, n#s, m) —m (p, STORE I#q, r, s, m(x:=n))"
| "(TMPF i#p, q, Suc O, s, m) —m (p, JMPF i#q, Suc O, s, m)"
| "i<length p =
(TMPF i#p, q, 0, s, m)
——m (drop i p, (rev (take i p))@(TMPF i#q), 0, s, m)"
| "i<length q =
(TMPB i#p, q,r, s, m)
—m ((rev (take i q))@(IMPB i#p), dropiq, r, s, m)"

fun
compc :: "cmd = instr list"
where
"compc SKIP = []"
| "compc (x::=a) = (compa a) @ [STORE x]"
| "compc (c1;c2) = compc c1 @ compc c2"
| "compc (IF b THEN c1 ELSE c2) =
(compb b) @ [POP] @
[TMPF (length(compc cl) + 2)] @ compc c1 @
[SET 0, IMPF (length(compc c2))] @ compc c2"
| "compc (WHILE b DO ¢) =
(compb b) @ [POP] @
[TMPF (length(compc c¢) + 1)] @ compc c @
[TMPB (length(compc c)+length(compb b) + 2)]"

Compiler Lemma
for Commands

@ If (e, m) —cm' then3dr
(compce, [], r,[], m) —m*
([1, rev (compc e), r',[1, m').

@ We need to prove: If (e, m) —c m then 3 r'
(compce,q,r,s, m) —m*
([1, rev (compc e)@q, r', s, m’).

@ The content of the register is determined by the
program (therefore 3).

What Have We Achieved?

@ T caught an "off-by-one" error in the compiler
function and a "copy-paste” error in the machine
definition.

@ We can "play-around” with the formalisation.

@ The language is very simple: no problems with null
pointers.

@ The language makes essentially no promises (we
are completely on our own).

@ No local variables.

Current Research

@ Scaling the reasoning to real languages (they have
for example garbage collectors)

@ Reasoning about languages with binders
tu=x |t ty | Azt
The last constructor represents a function which
takes one argument.

@ Az A\yx+y)23 —2+3
@ Ingeneral
(Azx.t)t' — t[x := /]

Current Research

@ Design languages that make "promises”

For example, if the compiler accepts the program,
it will never crash during run-time.

@ This needs expressive type-systems.

@ There is a fentions about what you can decide at
compile-time and what you have to check at
run-time (for example out-of-bounds errors).

