Prove the Correctness of a Compiler

@ The number of bugs in compilers is very small
compared to those in other programs.

@ But you have Thompson attacks.

@ Also we want to verify program sources, but run
machine code.



Last Week

@ specified which programs we can write (syntax)

@ (partly) specified what a program means
(semantics)



Syntax (1)

datatype aexp =
N nat
| X loc
| Opl1 "nat = nat" aexp
| Op2 "nat = nat = nat" aexp aexp

datatype bexp =
TRUE
| FALSE
| ROp "nat = nat = bool" aexp aexp
| NOT bexp
| AND bexp bexp
| OR bexp bexp



Syntax (2)

datatype cmd =

SKIP
| ASSIGN loc aexp ("_u=_"60)
| SEQ cmd cmd ("_: _"[60, 60] 10)

| COND bexp cmd emd ("IF _ THEN _ ELSE _" 60)
| WHILE bexpcmd  (“WHILE _ DO _" 60)

@ What does the factorial program look like?
@ What is SKIP useful for?



Semantics of Aexps

(Nnm) —an (Xim)—ami

(e.m) —an

(Opl fem) —afn

(e0,m) —an0 (el,m) —anl
(Op2 f eOelm) —a f nOnl

@ What is the semantics of bexps?



Semantics of Bexps

(TRUEm) —b True  (FALSE,m) —b False

(elm) —anl (e2m) —an2
(ROp f el e2m) —b f nln2

(em) —bb
(NOTem) —b-—b

(elm) —bbl (e2,m) —bb2
(AND el e2,m) —b bl A b2

(elm) —bbl (e2,m) —b b2
(ORele2m) —bblVv b2




(a,m) —an

(SKIPm) —cm  (x:=a,m) —cm(x:=n)

(cOm) —cm' (cIm) —cm"
(cO; cIlm) —cm"

(em) —b True (cOm) —cm’
(IF e THEN cO ELSE c1,m) —cm’

(e;m) —b False  (clm) —cm’
(IF e THEN cO ELSE c1,m) —cm’

(e,m) —b False
(WHILEe DO cm) —cm

(e;m) —b True
(cm) —cm' (WHILEeDOcm) —cm"

(WHILE e DO cm) —cm"




Equivalence

@ Two commands are equivalent

crc=Vmm'. (cm) —cm =(c','m) —cm



Equivalence

@ Two commands are equivalent

crc=Vmm'. (cm) —cm =(c','m) —cm

@ SKIP; SKIP =~ SKIP



Instructions

@ We have a memory, a stack and a single register.
datatype instr =

JMPF "nat" jump forward n steps, if reg. is False
| TMPB "nat" backward n steps
| FETCH "loc" move memory to top of stack
| STORE "loc" pop top of stack to memory
| PUSH "nat" push to stack
| POP stack to register
| SET "nat" set register
| OPU "nat = nat" pop one from stack and apply f

| OPB "nat => nat = nat" pop two from stack and apply f



Booleans

@ We encode booleans as O and 1.

fun
WRAP::"bool=>nat"
where
"WRAP True = 1"
| "WRAP False = 0"

fun

MNot::"nat = nat"
where

“MNot O = 1"
| "MNot (Suc 0) = 0"



Compiler for Aexps

fun

compa
where

"compa (N n) = [PUSH n]"
| "compa (X I) = [FETCH I]"
| "compa (Op1 f e) = (compa e) @ [OPU f]"
| "compa (Op2 f el e2) =

(compa el) @ (compa e2) @ [OPB f]"



Compiler for Bexps

fun
compb
where
"compb (TRUE) = [PUSH 17"
| "compb (FALSE) = [PUSH 0]"
| "compb (ROp f el e2) = (compa el) @ (compa e2)
@ [OPB (Ax y. WRAP (f x y))]"
| "compb (NOT e) = (compb e) @ [OPU MNot]"
| "compb (AND el e2) =
(compb el) @ (compb e2) @ [OPB MAnd]"
| "compb (OR el e2) =
(compb el) @ (compb e2) @ [OPB MOr]"



fun
compc :: "cmd = instr list"
where
"compc SKIP = []"
| "compc (x::=a) = (compa a) @ [STORE x]"
| "compc (c1;c2) = compc c1 @ compc c2"
| "compc (IF b THEN c1 ELSE c2) =
(compb b) @ [POP] @
[TMPF (length(compc c1) + 1)] @ compc c1 @
[SET 0, IMPF (length(compc c2))] @ compc c2"
| "compc (WHILE b DO ¢) =
(compb b) @ [POP] @
[TMPF (length(compc c¢) + 1)] @ compc c @
[TMPB (length(compc c)+length(compb b)+2)]"



Compiler Lemma for Aexps

@ We have to know how machine programs are
executed.

types instrs = "instr list"
types stack = "nat list"

inductive
step ("(_._._) —m'(___)"
where
"(PUSH n#p, s, m) —m (p, n#s, m)"
| "(FETCH I#p, s, m) —m (p, m I#s, m)"
| "(OPU f#p, n#s, m) —m (p, f n#s, m)"
| "(OPB f#p, n1#n2#s, m) —m (p, f n2 nl#s, m)"



Many Transitions

@ We have to build the transitive closure.



Many Transitions

@ We have to build the transitive closure.

(p.s,m) —m* (p,s,m)

(pl,51,m) —m (p2,52,m)

(pl,51,m) —m* (p2,5s2,m)

(pl,s1,m) —m* (p2,52,m)
(p2,s2,m) —m* (p3,s3,m)

(pl,s1,m) —m* (p3,s3,m)



Compiler Lemma for Aexps

@ If (e,m) —an, then
(compa e,[]m) —m* ([],[n]m)



Compiler Lemma for Aexps

@ If (e,m) —an, then
(compa e,[]m) —m* ([],[n]m)

@ Forall s, if (e,m) —an, then
(compa e, s m) —m* ([1,n # s,m)



Compiler Lemma for Aexps

@ If (e,m) —an, then
(compae,[]m) —m* ([1,[n],m)

@ Forall s, if (e,m) —an, then
(compa e, s m) —m* ([1,n # s,m)

lemma append:
assumes a: "(pl,s,m) —m (p2,s'm’)"
shows "(p1@p3,s,m) —m (p2@p3,s'm")"
using a by (induct) (auto intro: step.intros)

lemma appends:
assumes a: "(pl,s, m) —m* (p2,s',m’)"
shows "(p1@p3,s,m) —m* (p2@p3,s'm’)"
using a by (induct) (auto intro: steps.intros append)



Compiler Lemma

@ If (e,m) —an, then
V's. (compa e, s m) —m* ([],n # s,m)



Compiler Lemma

@ If (e,m) —an, then
V's. (compa e, s m) —m* ([],n # s,m)

@ If (e, m) —b b, then
V's. (compb e,s,m) —m* ([ WRAP b # s,m)



inductive
step (") —m ' ___)"
where
"(PUSH n#p, q,r,s, m) —m (p, PUSH n#q, r, n#s, m)"
| "(FETCH I#p, q,r, s, m) —m (p, FETCH I#q, r, m |#s, m)"
| "(OPU f#p, q, r, n#s, m) —m (p, OPU f#q, r, f n#s, m)"
| "(OPB f#p,q,r.n1#n2#s,m) —m (p, OPB f#q,r,f n2 nl#s,m)"
| "(POP#p, q, r, n#s, m) —m (p, POP#q, n, s, m)"
| "(SET n#p, q,r, s, m) —m (p, SET n#gq, n, s, m)"
| "(STORE x#p, q, r, n#s, m) —m (p, STORE |#q, r, s, m(x:=n))"
| "(TMPF i#p, q, Suc 0, s, m) —m (p, TMPF i#q, Suc O, s, m)"
| "i<length p—=-
(TMPF i#p, q,0,s, m) —m
(drop i p, (rev (take i p))@(IMPF i#q), 0, s, m)"
| "i<length q—>
(TMPB i#p, q,r, s, m) —m
((rev (take i q))@(IMPF i#p), dropiq,r,s, m)"



Points to Take Home

If you want to show the correctness of a
compiler, you have to specify precisely the
language, compiler and machine.

The proofs in the compiler lemma are mostly
inductions.

They are tedious, but cases are easily forgotten
(therefore use a theorem prover).

Proving the compiler lemma helps to debug the
compiler.





