SS 2009

Effiziente Algorithmen und Datenstrukturen II

Riko Jacob

Fakultät für Informatik TU München

http://www14.in.tum.de/lehre/2009SS/ea/

Sommersemester 2009

Kapitel 0 Organisatorisches

- Vorlesungen:
 - 4SWS Dienstag, 10:15-11:45, MI HS 2 Donnerstag, 10:15-11:45, MI 00.13.009A Wahlpflichtvorlesung im Gebiet Algorithmen (Theoretische Informatik, Informatik III), Bioinformatik
- Ubung:
 - 2SWS Zentralübung: Zeit und Ort wird noch festgelegt
 - Übungsleitung: Matthias Baumgart
- Umfang:
 - 4V+2ZÜ. 8 ECTS-Punkte
- Sprechstunde:
 - nach Vereinbarung

- Übungsleitung:
 - Matthias Baumgart, MI 03.09.060 (baumgart@in.tum.de)
 Sprechstunde: Montag, 10:30Uhr und nach Vereinbarung per Email
- Sekretariat:
 - Frau Lissner, MI 03.09.052 (lissner@in.tum.de)

- Übungsaufgaben und Klausur:
 - Ausgabe jeweils am Dienstag in der Vorlesung bzw. auf der Webseite der Vorlesung
 - Abgabe eine Woche später vor der Vorlesung
 - Besprechung in der Zentralübung

Klausur:

- Klausur/mndl. Prüfung
- bei der Klausur sind keine Hilfsmittel außer einem handbeschriebenen DIN-A4-Blatt zugelassen
- Leistungsnachweis: 40% der erreichbaren Hausaufgabenpunkte, erfolgreiche Teilnahme an Klausur/mndl. Prüfung
- vorauss. 10 Übungsblätter, jedes 10 Punkte

- Vorkenntnisse:
 - Einführung in die Informatik 1/2
 - Diskrete Strukturen (DS, DWT)
 - Grundlagen: Algorithmen und Datenstrukturen (GAD)
 - Effiziente Algorithmen und Datenstrukturen
- Weiterführende Vorlesungen:
 - Randomisierte Algorithmen
 - Komplexitätstheorie
 - Internetalgorithmik
 - . . .
- Webseite:

```
http://wwwmayr.in.tum.de/lehre/2009SS/ea/
```


Geplante Themengebiete

- Flüsse in Netzwerken
- String und Pattern Matching
- Textkompression
- Scheduling

1. Literatur

Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman: The design and analysis of computer algorithms, Addison-Wesley Publishing Company: Reading (MA), 1974

Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin: Network flows — Theory, algorithms, and applications, Prentice-Hall: Englewood Cliffs, NJ, 1993

Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:

Introduction to algorithms,

McGraw-Hill, 1990

Donald E. Knuth:

The art of computer programming. Vol. 1: Fundamental algorithms,

3. Auflage, Addison-Wesley Publishing Company: Reading (MA), 1997

Volker Heun:

Grundlegende Algorithmen: Einführung in den Entwurf und die Analyse effizienter Algorithmen,

2. Aufl., Vieweg: Braunschweig-Wiesbaden, 2003

Christos H. Papadimitriou, Kenneth Steiglitz:

Combinatorial optimization: Algorithms and complexity, Prentice-Hall, Englewood Cliffs, NJ, 1982

Data Structures and Network Algorithms, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, PA, 1983

Steven S. Skiena:

The algorithm design manual, Springer-Verlag: Berlin-Heidelberg-New York, 1998

Sven O. Krumke, Hartmut Noltemeier:

Graphentheoretische Konzepte und Algorithmen,
Teubner, Wiesbade, 2005

Weitere Originalarbeiten und Texte werden im Verlauf der Vorlesung angegeben.

Kapitel VII Flüsse in Netzwerken

1. Grundlagen

Flussnetzwerk

$$\mbox{Graph } G=(V,E), \qquad \mbox{Quelle } s\in V, \qquad \mbox{Senke } t\in V, \\ E\subseteq V\setminus \{t\}\times V\setminus \{s\}$$

Fluss

$$f \colon E \to \mathbb{R}_0^+ \text{ (oder } \mathbb{N}_0\text{)}$$

Flusserhaltung: Für alle $v \in V \setminus \{s, t\}$:

$$\sum_{u \colon (u,v) \in E} f(u,v) = \sum_{w \colon (v,w) \in E} f(v,w)$$

Flusswert:

$$|f| := \sum_{u \colon (s,u) \in E} f(s,u)$$

Übungsaufgabe

Es gilt

$$|f| = \sum_{u \colon (u,t) \in E} f(u,t)$$

2. Schnitte

Schnitt in G = (V, E): $S \subset V$, $s \in S$, $t \notin S$

$$\delta^+(S) = \{(u,v) \in E \mid u \in S, v \not \in S\}$$

$$\delta^-(S) = \{(u,v) \in E \mid u \not\in S, v \in S\}$$

$$f^+(S) = f(\delta^+(S)) = \sum_{e \in \delta^+(S)} f(e)$$

$$f^{-}(S) = f(\delta^{-}(S))$$

Exzess / Überschuss: $f(S) = f^+(S) - f^-(S)$

Hinweis Übung

Kapazitäten in Graph G = (V, E)

 $c \colon E \to \mathbb{R}_0^+$

Ein Fluss f ist zulässig $\iff f(u,v) \leq c(u,v)$ für alle $(u,v) \in E$

Kapazität eines Schnittes S

$$c(S) = \sum_{e \in \delta^+(S)} c(e)$$

Lemma 1 (Schnitt beschränkt Fluss)

Für jeden zulässigen Fluss f und jeden Schnitt S in G gilt:

$$|f| \le c(S)$$

3. Min-Cut-Max-Flow-Theorem

Theorem 2 (Min-Cut-Max-Flow)

Für jedes Flussnetzwerk G=(V,E,s,t) mit Kapazitäten c gilt

$$\max_{f \text{ ist Fluss in } G} |f| = \min_{S \text{ ist Schnitt in } G} c(S)$$

Residualnetz, selbe Knotenmenge

$$c_f(u, v) = c(u, v) - f(u, v) + f(v, u)$$
$$G_f = (V, \{(u, v) \mid c_f(u, v) > 0\}$$

Augmentierender Pfad

ist ein Pfad ohne Kantenwiederholung $p=(s=v_0,v_1,\ldots,v_k=t)$ in G_f

 $c_p = \min c_f(v_i, v_{i+1}) > 0$ seine Kapazität.

Definition 3 (Addition von Flüssen)

$$f + f'(u, v) := \max\{0, f(u, v) - f(v, u) + f'(u, v) - f'(v, u)\}\$$

Lemma 4

Sei f zulässiger Fluss in G und f' ein zulässiger Fluss in G_f . Dann ist f+f' zulässiger Fluss in G.

Theorem 5 (Max Flow Min Cut)

Für ein Flussnetzwerk G mit Kapazitäten c und einen Fluss f sind äquivalent:

- f ist maximaler Fluss
- \circled{Q} G_f hat keinen augmentierenden Pfad
- **3** |f| = c(S) für einen Schnitt S

Beweis:

 $\neg 2 \Rightarrow \neg 1$: ein augmentierender Pfad kann den Fluss vergrößern

 $2 \Rightarrow 3$: S ist die s-Komponente von G_f

 $\neg 1 \Rightarrow \neg 3$: Ein größerer Fluss widerspricht Lemma 1

4. Ford-Fulkerson-Algorithmus

L.R. Ford, Jr., D.R. Fulkerson:

Maximal flow through a network.

Can. J. Math. 8 pp. 399–404, 1956

Algorithmus

Wiederhole solange möglich:

Vergrößere Fluss entlang irgendeines augmentierenden Pfads

Theorem 6

Für jedes Flussnetzwerk mit integralen Kapazitäten existiert ein integraler maximaler Fluss f^* .

Ein solcher kann in $O(|f^*||E|)$ Zeit gefunden werden.

Theorem 7 (Satz von Hall, Heiratssatz)

Sei $G = (U \cup V, E)$ ein bipartiter Graph. Es gibt genau dann ein U-perfektes Matching

Es gibt genau dann ein U-perfektes Matching in G wenn für alle $U'\subseteq U$ gilt

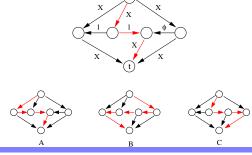
$$|N(U')| \ge |U'|$$

5. Konvergenzprobleme

Irrationale Kapazitäten

Es gibt ein Flussnetzwerk und eine Folge von augmentierenden Pfaden, so dass für die Folge f_i von Flüssen gilt

- \bullet G_{f_i} ist zusammenhängend
- \bullet $|f_i|$ konvergiert, aber nicht gegen den Maximalwert



6. Edmonds-Karp Heuristik

Heuristik 1

Wähle den augmentierenden Pfad mit dem größten Wert

Theorem 8

Im Fall von ganzzahligen Kapazitäten benötigt Heuristik 1 $|E|\ln|f^*|$ Iterationen und $O(|E|^2\log|V|\ln|f^*|)$ Laufzeit um den optimalen Fluss f^* zu finden.

Lemma 9

Ein maximaler augmentierender Pfad kann (wie ein maximaler spannender Baum) in $O(|E|\log |V|)$ berechnet werden.

Lemma 10

Für jeden Fluss f hat der maximale augmentierende Pfad p einen Wert $c_p \geq (|f^*| - |f|)/|E|$

Lemma 11

Seien f, f' zulässige Flüsse in $G, |f'| \ge |f|$. Dann ist f' - f zulässiger Fluss in G_f .

Lemma 12

Sei G'=(V,E,s,t,c) ein Residualnetzwerk, q ein Kapazitäts-maximaler augmentierender Pfad, c_q dessen Kapazität. Sei h ein maximaler Fluss in G'. Dann gilt $c_q \geq |h|/|E|$

Heuristik 2

Wähle den augmentierenden Pfad mit den wenigsten Kanten

Definition 13

 $\operatorname{dist}_i(v) := \mathsf{Kantendistanz} \ \mathsf{in} \ G_{f_i} \ \mathsf{von} \ s \ \mathsf{nach} \ v \ (+\infty \ \mathsf{erlaubt})$

Lemma 14

Für jeden Knoten $v \in V$ gilt $\operatorname{dist}_{i+1}(v) \geq \operatorname{dist}_i(v)$.

Lemma 15

Während der Abarbeitung der Heuristik 2 kann jede Kante (u,v)höchstens |V|/2 mal vom residualen Graphen verschwinden.

Lemma 16

Heuristik 2 benötigt $|E| \cdot |V|/2$ Iterationen und eine Laufzeit von $O(|V| \cdot |E|^2)$.

7. Blockierende Flüsse

7.1 Dinits' Algorithmus

Definition 17 (geschichtet)

Ein Flussnetzwerk ist geschichtet, falls es eine Partition $V=V_0\cup V_1\cup V_k$ mit $V_0=\{s\}$ und $V_k=\{t\}$ der Knoten gibt, so dass für alle Kanten (u,v) gilt $u\in V_i,v\in V_{i+1}$ für ein i.

Lemma 18

Für $v_i \in V_i$ gilt $dist(s, v_i) \ge i$, $dist(v_i, t) \ge k - i$.

Definition 19 (L)

Die Schichtung L eines Flussnetzwerkes G definiert $V_i = \{v \mid \mathrm{dist}_G(s,v) = i\}$ und entfernt alle Kanten, die nicht der Schichtungsbedingung genügen.

So entsteht \mathcal{L}_f aus dem Residualnetzwerk \mathcal{G}_f .

Definition 20 (Blocking Flow)

Ein Fluss f in einem geschichteten Flussnetzwerk L ist blockierend, falls jeder kürzeste s-t Pfad eine saturierte Kante (f(u,v)=c(u,v)) enthält.

Dinits' Algorithmus

- $f_0 = 0$
- Wiederhole $f_{i+1} = f_i + \text{blockierender Fluss in } L_{f_i}$ solange G_{f_i} augmentierende Pfade enthält.

Lemma 21

Ein blockierender Fluss kann in O(|V||E|) Zeit gefunden werden.

Lemma 22

 $\operatorname{dist}_{i+1}(s,t) > \operatorname{dist}_i(s,t) + 1$

7.2 0-1-Netzwerke

Definition 23 (0-1 Netzwerk)

Ein Flussnetzwerk mit c(e) = 1 für alle Kanten heißt 0-1 Netzwerk.

Lemma 24

Ein blockierender Fluss in einem geschichteten 0-1 Netzwerk kann in O(|E|) Zeit gefunden werden.

Lemma 25

Sei G ein 0-1 Flussnetzwerk und f ein zulässiger, ganzzahliger Fluss in G. Dann kann G_f als 0-1 Netzwerk mit |E| Kanten dargestellt werden.

Lemma 26

Sei G ein 0-1 Netzwerk, f^* ein maximaler Fluss darin, $M=|f^*|$, und $h=\mathrm{dist}(s,t)$. Dann gilt

$$h \le \frac{|E|}{M}$$

Lemma 27

Für 0-1 Netzwerke benötigt Dinits' Algorithmus $O\left(|E|^{rac{3}{2}}
ight)$ Zeit.

Definition 28 (Typ 1)

Ein 0-1 Netzwerk ist vom Typ 1, falls es keine parallen Kanten hat. Es ist vom Typ 1a, falls jede Kante höchstens eine parallele hat.

Lemma 29

Sei G ein 0-1 Netzwerk vom Typ 1, f ein gültiger Fluss in G. Dann ist G_f ein 0-1 Netzwerk vom Typ 1a.

Lemma 30

Sei G ein geschichtetes 0-1 Netzwerk vom Typ 1a, $M=|f^*|$ der maximale Flusswert, $h=\operatorname{dist}(s,t)$. Dann gilt $h\leq \frac{2|V|}{\sqrt{M/2}}+1$.

Lemma 31

Für 0-1 Netzwerke vom Typ 1 benötigt Dinits' Algorithmus $O\left(|V|^{\frac{2}{3}}\cdot|E|\right)$ Zeit.

Definition 32 (Typ 2)

Ein 0-1 Netzwerk ist vom Typ 2, falls jeder Knoten entweder nur eine eingehende, oder nur eine ausgehende Kante hat.

Lemma 33

Sei G ein 0-1 Netzwerk vom Typ 2, f ein ganzzahliger gültiger Fluss in G.

Dann ist G_f ein 0-1 Netzwerk vom Typ 2.

Lemma 34 (Übung)

Sei G ein geschichtetes 0-1 Netzwerk vom Typ 2, $M = |f^*|$ der maximale Flusswert, $h = \operatorname{dist}(s,t)$. Dann gilt $h \leq \frac{|V|-2}{M} + 1$.

Lemma 35

Für 0-1 Netzwerke vom Typ 2 benötigt Dinits' Algorithmus $O\left(|V|^{\frac{1}{2}}\cdot |E|\right)$

8. Erweiterungen und Spezialfälle

8.1 Netzwerke mit unteren und oberen Schranken

Shimon Even:

Networks with upper and lower bounds. Graph Algorithms, section 5.3, Computer Science Press: Rockville, MD, 1979

Lemma 36

Für ein Flussnetzwerk G mit oberen und unteren Fluss-Schranken kann mit der Berechnung eines maximalen Flusses auf einem Graphen G' mit |V'| = |V| + 2 und |E'| = |E| + 2|V| + 2 gültiger Fluss in G gefunden werden, falls ein solcher existiert.

9. Preflow Algorithmen

9.1 Der Malhotra-Pramodh Kumar-Maheshwari (MPM++) Algorithmus

Weitere Literatur:

Robert Endre Tarjan:

A simple version of Karzanov's blocking flow algorithm.

Oper. Res. Lett. 2 pp. 265-268, 1984

Struktur des MPM++ Algorithmus

Berechne blockierenden Fluss in $O(|V|^2)$ Zeit, also einen maximalen Fluss in $O(|V|^3)$.

Definition 37 (Preflow)

Sei G=(V,A,s,t,c) ein Flussnetzwerk. $f\colon A\to \mathbb{R}_0^+$ (oder \mathbb{N}_0) ist ein Preflow, falls f die Kapazitäten einhält und $f_{\mathrm{in}}(v)\geq f_{\mathrm{out}}(v)$ für alle $v\in V\setminus\{s,t\}$ gilt.

Definition 38 (Blockierte Knoten)

Der Algorithmus nennt einige Knoten blockiert:

Diese Knoten "haben genug" ausgehenden Fluss.

Ein unblockierter Knoten kann blockiert werden, nicht umgekehrt.

Invariante

Für jeden blockierten Knoten v gilt:

Alle Pfade von v nach t enthalten eine saturierte Kante

Definition 39 (Balanciere unblockiertes v: Increase (v, w))

Falls w nicht blockiert ist:

$$f(v, w) + = \min\{c(v, w) - f(v, w), f_{in}(v) - f_{out}(v)\}\$$

Definition 40 (Balanciere blockiertes v: Decrease (u, v))

$$f(u,v) - = \min\{f(u,v), f_{in}(v) - f_{out}(v)\}\$$

Algorithmus: Increase Flow

- In topologischer Ordnung:
 - Balanciere unblockierten Knoten v mittels Increase (v, w) $\Rightarrow v$ ist balanciert oder blockiert

Algorithmus: Decrease Flow

- In umgekehrter topologischer Ordnung:
 - Balanciere blockierten Knoten v mittels Decrease (u, v) $\Rightarrow v$ ist balanciert

Algorithmus: Blocking Flow in geschichtetem Netzwerk (MPM++)

Saturiere Kanten der Form (s, v); s ist blockiert.

Solange es einen unblockierten und unbalancierten Knoten gibt:

- Increase Flow (unblockierte Knoten balanciert oder blockiert)
- Decrease Flow (alle blockierte Knoten balanciert)

Korrektheit

Falls der Algorithmus terminiert, hat er einen gültigen, blockierenden Fluss gefunden.

Laufzeit

Der Algorithmus terminiert nach höchstens |V| Iterationen. Es wird höchstens $|V|^2$ mal versucht einen Knoten zu balancieren. Der Fluss auf einer Kante e wird zunächst größer, dann kleiner. Es gibt höchstens $2|E|+|V|^2$ Increase oder Decrease Schritte.

Theorem 41 (Laufzeit MPM++)

Der Algorithmus MPM++ berechnet in $O(|V|^2)$ Zeit einen blockierenden Fluss.

Somit erreicht Dinits' Algorithmus eine Laufzeit von $O(|V|^3)$.

9.2 Push/Relabel-Algorithmus von Goldberg-Tarjan

Andrew V. Goldberg, Robert E. Tarjan:

A new approach to the maximum-flow problem.

J. ACM **35** pp. 921–924, ACM Press: New York, 1988

Definition 42 (Distanzmarkierung)

 $d \colon V \to \mathbb{N}$ ist D. in G bezüglich Preflow f falls gilt

- d(t) = 0
- für alle $(u,v) \in G_f$ gilt $d(u) \le d(v) + 1$ bei Gleichheit heißt (u, v) zulässig.

Lemma 43

Für einen Pfad p in G_f von v nach t und eine Distanzmarkierung dgilt d(v) < |p|.

Falls $d(s) \geq |V|$ und f ist Fluss, dann existiert kein Pfad von s nach t und f ist maximaler Fluss.

Push/Relabel Algorithmus

Push-Relabel u (unbalanciert)

- Falls zulässige Kante (u, v) existiert: $f(u,v) + = \min c(u,v) - f(u,v), f_{in}(u) - f_{out}(u)$
- sonst: Erhöhe $d(u) := 1 + \min\{d(v) \mid (u, v) \in G_f\}$

Generischer Push-Relabel Algorithmus

- für alle $(u,v) \in E$: setze f(u,v) = 0
- 2 für alle v: $d(v) = \operatorname{dist}_{G_f}(v,t)$
- 3 d(s) = n, f(s, u) = c(s, u) für alle passenden u
- 4 solange es einen unbalancierten Knoten gibt:
- o wähle einen solchen. *u*
- Push-Relabel(u)

Lemma 44 (Pfad zu s)

Sei f Preflow im P-R Algorithmus, v ein aktiver Knoten. Dann existiert in G_f ein Weg von v nach s.

Lemma 45 (d < 2n)

In P-R ist immer $d(v) \leq 2n-1$. Jeder Knoten wird höchstens 2n-1 mal "erhöht". Insgesamt finden $O(n^2)$ Markenerhöhungen statt.

Definition 46 ((nicht-) sättigender Flussschub)

- $\delta = c(u, v) f(u, v)$: sättigend
- $\delta = f_{\rm in}(u) f_{\rm out}(u)$: nicht-sättigend

Lemma 47 (wenige sättigende Flussschübe)

P-R führt O(nm) sättigende Flussschübe aus.

Lemma 48 (wenige nicht-sättigende Flussschübe)

P-R führt $O(n^2m)$ nicht-sättigende Flussschübe aus.

$$\Phi := \sum_{v \text{ ist aktiv}} d(v)$$

Theorem 49

Der generische Push-Relabel Algorithmus benötigt $O(n^2)$ Markenerhöhungen, O(nm) sättigende und $O(n^2m)$ nicht-sättigende Flussschübe.

Highest-Label-Push-Relabel

Wähle aktives u mit höchster Marke (bis u balanciert ist)

FIFO-Push-Relabel

Wähle aktives u am Kopf der FIFO-Schlange F

Arbeite mit u bis dieses balanciert oder erhöht wird.

Neu aktivierte Knoten werden am Ende von F angefügt (auch u).

Theorem 50 (FIFO-Push-Relabel)

Der FIFO-Push-Relabel Algorithmus benötigt $O(n^2)$ Markenerhöhungen, O(nm) sättigende und $O(n^3)$ nicht-sättigende Flussschübe.

Potential

$$\Phi := \max\{d(u) \mid u \text{ ist aktiv}\}$$

parallele Implementierung

 $O(n^2)$ Pulse-Phasen genügen.

Implementierung Preflow Push

Ziel: Push-Relabel(u) ist amortisiert O(1) bzw. $O(n^3)$ total

Datenstruktur für G_f

Beide Sorten mögliche Pfeile doppelt verkettet, antiparallel verlinkt d(u), Residualkapazität aller Pfeile und Überschuss aller Knoten Pfeil-Pointer "current"

aktive Knoten gespeichert in

- doppelt verkettete Liste
- FIFO-Schlange
- ullet Pro möglichem Markenwert eine d-v-Liste + höchste Marke k^*

10. Der Skalierungsansatz von Ahuja-Orlin

Ravindra K. Ahuja, James B. Orlin:

A fast and simple algorithm for the maximum flow problem. Oper. Res. **37** pp. 748–759, Operations Research Society of America, 1989

Laufzeit $O(nm + n^2 \log U)$

 Δ -Phasen: P-R kleinste Marke: $\Delta/2 < e \leq \Delta$; push-cap

Jeder nicht-sättigende push schickt $> \Delta/2$

Kein "excess" über Δ wird erzeugt

 $<8n^2$ nicht-sättigende pushs pro Skalierungsphase

11. Zerlegung eines Flusses

Definition 51 (b-Fluss)

Flussüberschuss von v:

$$\mathrm{exc}_f(v) := \sum_{u \colon (u,v) \in E} f(u,v) - \sum_{w \colon (v,w) \in E} f(v,w)$$

f ist b-Fluss für Knotenbewertung $b \colon V \to \mathbb{R}$: $\operatorname{exc}_f(v) = b(v)$

Für $b \equiv 0$ heisst f eine Strömung oder Zirkulation

Zulässigkeit: Schranken l,c mit $0 \le l(e) \le f(e) \le c(e)$

Definition 52 (Weg- / Kreisströmung)

Sei $P\subseteq E$ ein einfacher Weg oder Kreis, $\delta>0$ Flusswert/Strömungswert

$$f_{P,\delta}(e) = \begin{cases} \delta, & \text{falls } e \in P \\ 0, & \text{sonst} \end{cases}$$

Theorem 53 (Flussdekompositionssatz)

Jeder b-Fluss f lässt sich als Summe von |V| + |E| Wegflüssen und Kreisströmungen darstellen mit:

- Für jeden Wegfluss f_P ist P ein Weg von Knoten v mit b(v) < 0 zu u mit b(u) > 0
- ullet es gibt höchstens m Kreisströmungen

Falls f ganzzahlig ist, gilt dies auch für die Wegflüsse und Kreisströmungen.

12. Kostenminimale Flüsse

Definition 54 (Flusskosten)

Sei $k : E \to \mathbb{R}$ eine Kantenbewertung. Für einen b-Fluss f sind Flusskosten

$$k(f) = \sum_{e \in E} k(e) \cdot f(e)$$

Definition 55 (Minimalkostenflussproblem)

Eingabe Gerichteter Graph G = (V, E),

Kapazitäten $c \colon E \to \mathbb{R}^+$,

Überschüssen $b: V \to \mathbb{R}$ und

Flusskosten $k : E \to \mathbb{R}$.

Gesucht Ein b-Fluss f mit minimalen Flusskosten k(f).

Theorem 56 (Zerlegung der Differenz)

Seien f, f' beide bezüglich l (untere) und c (Kapazität) zulässige b-Flüsse in G.

Dann gibt es höchstens 2m Kreisströmungen f_i (zulässig in G_f) mit $f' = f + \sum_i f_i$ und es gilt $k(f') = k(f) + \sum_i k(f_i)$

Definition 57 (Residualnetzwerk mit unteren Schranken)

$$c_f(+r) = c(r) - f(r), k(+r) = k(r)$$

 $c_f(-r) = f(r) - l(r), k(-r) = -k(r)$

Wie Definition 3 und Lemma 11 über Differenz von Flüssen

Theorem 58 (Kreis-Kriterium)

f ist genau dann ein kostenminimaler b-Fluss, wenn das Residualnetzwerk G_f keinen Kreis mit negativer Länge bezüglich der Kostenfunktion k aufweist.

Theorem 59 (Schranke endlicher Fluss)

Falls es einen kostenminimalen b-Fluss f gibt, dann gilt für alle $e \in E$: $l(e) \le f(e) \le (|V| + |E|)(C+B)$ mit $C = \max\{c(e) < \infty\}$ und $B = \max\{|b(v)|\}$

Algorithmus von Klein

- Suche einen zulässigen Fluss
- Wiederhole: Augmentiere entlang eines Kreises negativer Länge

Die Anzahl Iterationen für ganzzahlige $k \geq 0, c, l, b$ ist O(CKm).

Kriterium für Kreise negativer Länge

In einem gerichteten Graphen G(V,E) mit Kantengewichten $k\colon E\to\mathbb{R}$ gibt es genau dann keinen negativen Kreis, wenn es ein Potential $p\colon V\to\mathbb{R}$ gibt, so dass alle reduzierten Kosten k'(u,v)=k(u,v)-p(u)+p(v) nicht negative sind.

Lemma 60 (Dualitätskriterium mincostflow)

Ein b-Fluss f ist genau dann minimal, wenn es für den Residualgraph G_f ein Potential p gibt, so dass alle Kanten in G_f nicht-negative reduzierte Kosten haben.

Normalisierungen

- $l \equiv 0$
- $k \geq 0$
- für alle u, v gibt es eine Kante mit $c(u, v) = +\infty$
- $c(e) < +\infty$ oder $c \equiv +\infty$

Annahmen über Instanzen

- es existiert eine zulässiger b-Fluss $(\sum_{v \in V} b(v) = 0)$
- ② für alle u,v gibt es einen Weg über Kanten mit $c(e)=+\infty$
- \bullet es gilt $l \equiv 0$ und $k \geq 0$

Definition 61 (Pseudofluss)

ist eine Kantenbewertung $0 \le f \le c$. imbal_f(v) := $\exp_f(v) - b(v)$:

- \bullet übersättigt (surplus node) S_f
- ullet unterversorgt (deficit node) D_f
- befriedigt / balanciert

Definition 62 (Reduzierte Kosten Kriterium)

Ein b-Fluss f und ein Potential p, so dass alle Kanten im Residualgraph G_f nicht-negative reduzierte Kosten haben.

Lemma 63

Sei f Pseudofluss, $s \in V$ beliebig, $G' \sqsubseteq G_f$, so dass alle Ecken von s aus erreichbar sind. Sei p ein Potential so dass alle reduzierten Kosten in G' nicht-negativ sind, und d(v) die kürzeste Wege Distanzen von s aus in G' bezüglich der reduzierten Kosten. Dann gilt

- Die reduzierten Kosten bezüglich p' = p + d sind nicht-negativ.
- Ist $(u,v) \in G'$ auf dem kürzesten Weg, so sind die reduzierten Kosten bezüglich p' gleich 0.

Successive Shortest Path Algorithmus

Setze $f\equiv 0$ und $p\equiv 0$, berechne $\mathrm{imbal}_f, S_f, D_f$ Solange $S_f\neq \emptyset$

- Wähle $s \in S_f$, $t \in D_f$, berechne d(v) bezüglich s, p
- 2 Sei P ein kürzester Weg von s nach t
- **3** bestimme $\varepsilon := \min\{\Delta = c_f(P), \mathrm{imbal}_f(s), -\mathrm{imbal}_f(t)\}$
- lacktriangle Erhöhe f längs P um ε , aktualisiere p:=p+d
- Aktualisiere G_f , S_f , D_f , imbal_f

Lemma 64

Der Algorithmus berechnet für ganzzahlige Eingaben einen kostenminimalen b-Fluss.

Die Anzahl der Iterationen ist O(nB)

Capacity Scaling Algorithm

Setze $f\equiv 0$ und $p\equiv 0$, berechne imbal, S_f, D_f , U=B+C Setze $\Delta=2^{\lfloor \log U \rfloor}$

Solange $\Delta \geq 1$

- Sättige Kanten mit negativen Kosten
- **2** Berechne $S_f(\Delta), D_f(\Delta), G_f(\Delta)$
- **3** Solange beide $S_f(\Delta), D_f(\Delta) \neq \emptyset$
 - Wähle $s \in S_f(\Delta)$, $t \in D_f(\Delta)$, berechne d(v) bezüglich s, p
 - ullet Sei P ein kürzester Weg von s nach t
 - Erhöhe f längs P um Δ , aktualisiere p := p + d
 - Aktualisiere $G_f(\Delta)$, $S_f(\Delta)$, $D_f(\Delta)$

Setze $\Delta := \Delta/2$

Lemma <u>65</u>

Alg. ist korrekt, Anzahl Flusserhöhungen $O\Big((n+m)\log U\Big)$, Gesamtlaufzeit $O\Big((m+n)(m+n\log n)\log U\Big)$

Kapitel VIII Textsuche

1. Begriffe und Notation

Volker Heun:

Grundlegende Algorithmen — Einführung in den Entwurf und die Analyse effizienter Algorithmen.

p. 215, Vieweg Verlag: Braunschweig-Wiesbaden, 2003

2. Der Algorithmus von Knuth-Morris-Pratt

Volker Heun:

Grundlegende Algorithmen — Einführung in den Entwurf und die Analyse effizienter Algorithmen.

pp. 216–218, Vieweg Verlag: Braunschweig-Wiesbaden, 2003

Volker Heun:

Grundlegende Algorithmen — Einführung in den Entwurf und die Analyse effizienter Algorithmen.

pp. 218–221, Vieweg Verlag: Braunschweig-Wiesbaden, 2003

Donald E. Knuth, James H. Morris, Vaughan R. Pratt: Fast pattern matching in strings.

SIAM J. Comput. 6 pp. 323-350, Society for Industrial and Applied Mathematics: Philadelphia, PA, 1977

3. Der Algorithmus von Boyer und Moore

Volker Heun:

Grundlegende Algorithmen — Einführung in den Entwurf und die Analyse effizienter Algorithmen.

pp. 221-224, Vieweg Verlag: Braunschweig-Wiesbaden, 2003

Der Algorithmus von Boyer und Moore (Forts.):

Volker Heun:

Grundlegende Algorithmen — Einführung in den Entwurf und die Analyse effizienter Algorithmen.

pp. 224-228, Vieweg Verlag: Braunschweig-Wiesbaden, 2003

Der Algorithmus von Boyer und Moore (Forts.):

Grundlegende Algorithmen — Einführung in den Entwurf und die Analyse effizienter Algorithmen.

pp. 228-230, Vieweg Verlag: Braunschweig-Wiesbaden, 2003

Robert S. Boyer, J. Strother Moore:

A fast string searching algorithm.

Comm. ACM **20** pp. 762–772, ACM Press: New York, 1988

Zvi Galil:

On improving the worst case running time of the Boyer-Moore string matching algorithm.

Comm. ACM 22 pp. 505-508, ACM Press: New York, 1988

Einige weitere interessante Artikel:

String Matching in Real Time.

J. ACM **28** pp. 134–149, ACM Press: New York, 1981

Zvi Galil. Joel Seiferas:

Time-Space-Optimal String Matching.

J. Comput. Syst. Sci. 26 pp. 280–294, Academic Press: New York-San Francisco-London-San Diego, 1983