Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Christian Scheideler Jonas Pfoh

Effiziente Algorithmen und Datenstrukturen I

Aufgabe 1

Consider the de Bruijn class of Graphs and give the max degree, diameter, and expansion for this class of graphs.

Aufgabe 2

Consider the following graph:

Represent this graph as (a) an adjacency field, (b) an adjacency list, and (c) an adjacency matrix.

Aufgabe 3

Given an undirected graph G = (V, E) where $V = \{a, b, c, d, e, f, g, h, i\}$ and E is represented by the following adjacency list:

a:d,e,i	b:c,f,i	c: b, g, h
d:a,f,g,i	e:a	f:b,d
g:c,d,h	h:c,g	i:a,b,d

- a) Show the DFS-sequence of vertices and the DFS-number for each vertex starting from vertex d (work through each adjacency list from left to right).
- b) Carry out a BFS starting at vertex d and show after each step what the queue looks like.