Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Christian Scheideler Jonas Pfoh

Effiziente Algorithmen und Datenstrukturen I

Aufgabe 1

Consider the following Binary Heap:

Carry out the operations in the following order and show, after each operation, what the Binary Heap looks like(always carry out each operation on the result of the previous operation):

- 1. deleteMin()
- 2. insert(3)
- 3. deleteMin()
- 4. insert(10)

Aufgabe 2

We discussed that the delete operation for Binary Heaps takes $O(\log n)$ time, however we did not discuss how this operation works. Describe how this alorithm would be implemented (or give a pseudo-code algorithm) such that it is correct and that the runtime is $O(\log n)$.

Aufgabe 3

Consider the following Binomial Heaps: Heap A:

Heap B:

Carry out the operations in the following order and show, after each operation, what the Binomial Heap looks like(always carry out each operation on the result of the previous operation):

- 1. merge(A,B)
- 2. deleteMin()

Aufgabe 4

Consider the following Fibonacci Heaps: Heap A:

Heap B:

Carry out the operations in the following order and show, after each operation, what the Fibonacci Heap looks like(always carry out each operation on the result of the previous operation):

- 1. merge(A,B)
- 2. insert(22)
- 3. deleteMin()
- 4. delete(6)

Aufgabe 5

In discussing the Radix Heap, we also discussed the $msd(k_{min}, k)$ function. Assuming $k_{min} = 9$, solve $msd(k_{min}, k)$ for the following values of k:

- k = 9
 k = 13
 k = 24
- 4. k = 50

Aufgabe 6

Consider the deleteMin() operation for Radix Heaps. Assume that k_{min} is the element to be removed, k'_{min} is the smallest element after k_{min} has been removed, and i is the smallest i s.t. $B[i] \neq \emptyset$ after k_{min} has been removed. We said that the following property holds:

 $\forall_{j>i}\forall_{k\in B[j]}msd(k_{min},k) = msd(k'_{min},k) = j$

Please explain why this is the case.