6. Transitive Hülle

6.1 Min-Plus-Matrix-Produkt und Min-Plus-Transitive Hülle

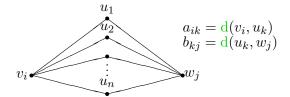
Wir betrachten den (kommutativen) Semiring über $\mathbb{R} \cup \{\infty\}$ mit den Operationen min und +. Für jede der beiden Operationen haben wir ein Monoid. Es gilt das Distributivgesetz $a + \min\{b, c\} = \min\{a + b, a + c\}.$

Normale Matrixmultiplikation:

$$A = (a_{ij})_{1 \le i,j \le n}, \quad B = (b_{ij})_{1 \le i,j \le n}, \quad I = (\delta_{ij})_{1 \le i,j \le n}$$
$$C = A \cdot B = (c_{ij})_{1 \le i,j \le n}, \quad c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

Entsprechend für Min-Plus:

$$c_{ij} = \min\{a_{ik} + b_{kj}; \ 1 \le k \le n\}$$



Anwendung:

kürzeste Wege von v_i nach w_i in einem Graph (A = B); dabei ist

$$I_{\min,+} = \begin{pmatrix} 0 & & \infty \\ & \ddots & \\ \infty & & 0 \end{pmatrix}$$

Sei A Entfernungsmatrix, $A = (a_{ij})_{1 \le i,j \le n} = (d(v_i, v_j))_{1 \le i,j \le n}$. Setze $a_{ii} = 0$ für $i = 1, \ldots, n$.

Betrachte A^2 mit dem Min-Plus-Produkt, $A^2 =: (a_{ij}^{(2)})_{1 \le i,j \le n}$.

Dann ist $a_{ij}^{(2)}$ die Länge eines kürzesten Pfades von v_i nach v_j , der höchstens zwei Kanten enthält. Induktion ergibt: $a_{ij}^{(k)}$ ist die Länge eines kürzesten Pfades von v_i nach v_j mit höchstens k Kanten. Falls die $d(v_i, v_j)$ alle ≥ 0 sind, gibt es immer kürzeste Pfade, die höchstens n-1 Kanten enthalten.

Damit ergibt sich folgende alternative Lösung des all-pairs-shortest-path-Problems:

Berechne
$$A^{n-1}$$
 (Min-Plus)!

Es genügt auch, $A^{2^{\lceil \log(n-1) \rceil}}$ durch wiederholtes Quadrieren zu berechnen (nicht A^2, A^3, A^4, \ldots).

Definition 114

 $A^* := \min_{i \geq 0} \{A^i\}$ heißt Min-Plus-Transitive Hülle.

Bemerkung: \min wird komponentenweise gebildet. Wenn $d \ge 0$, dann $A^* = A^{n-1}$.

6.2 Boolesche Matrixmultiplikation und Transitive Hülle

Wir ersetzen nun im vorhergehenden Abschnitt die Distanzmatrix durch die (boolesche) Adjazenzmatrix und $(\min, +)$ durch (\vee, \wedge) , d.h.:

$$C = A \cdot B;$$
 $c_{ij} = \bigvee_{k=1}^{n} a_{ik} \wedge b_{kj}$

Wenn wir zudem $a_{ii}=1$ für $1 \leq i \leq n$ setzen, dann gilt für A^k (boolesches Produkt, $A^0 = I$)

$$a_{ij} = \begin{cases} 1 & \text{falls es im Graphen einen Pfad von } v_i \text{ nach } v_j, \\ & \text{bestehend aus } \leq k \text{ Kanten, gibt} \\ 0 & \text{falls es im Graphen keinen Pfad von } v_i \text{ nach } v_j, \\ & \text{bestehend aus } \leq k \text{ Kanten, gibt} \end{cases}$$

Transitive Hülle:

$$A^* := \bigvee_{i \ge 0} A^i \qquad (= A^{n-1})$$

ist damit die Adjazenzmatrix der transitiven Hülle des zugrunde liegenden Digraphen.

Satz 115

Sei M(n) die Zeitkomplexität für das boolesche Produkt zweier $n \times n$ -Matrizen, T(n) die Zeitkomplexität für die transitive Hülle einer $n \times n$ booleschen Matrix.

$$T(n) = \Theta(M(n))$$
.

Beweis:

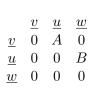
(1) Matrixmultiplikation ≺ transitive Hülle: Seien boolesche Matrizen A, B gegeben und ihr boolesches Produkt $C = A \cdot B$ gesucht.

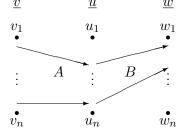
Setze:

$$L = \underbrace{\begin{pmatrix} 0 & A & 0 \\ 0 & 0 & B \\ 0 & 0 & 0 \end{pmatrix}}_{3n}$$

Beweis (Forts.):

L ist die Adjazenzmatrix eines tripartiten Digraphen, denn:





Daher kann L^* leicht bestimmt werden:

$$L^* = \begin{pmatrix} I & A & AB \\ 0 & I & B \\ 0 & 0 & I \end{pmatrix} \qquad (= I \lor L \lor L^2)$$

Also gilt: $M(n) \leq T(3n) = \mathcal{O}(T(n))$.

Beweis (Forts.):

(2) Transitive Hülle ≺ Matrixmultiplikation:

Gegeben: $n \times n$ boolesche Matrix L; gesucht: L^* ; Annahme: n ist Zweierpotenz. Teile auf:

$$L = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{cases} \frac{n}{2} \\ \frac{n}{2} \end{cases}; \quad L^* = \begin{pmatrix} E & F \\ G & H \end{pmatrix}$$

Es gilt also:

$$E = (A \vee BD^*C)^*$$
 betrachte alle Pfade von der ersten Hälfte der Knoten zur ersten Hälfte $F = EBD^*$ analog $G = D^*CE$ analog $H = D^* \vee GF$ analog

Beweis (Forts.):

Um L^* zu berechnen, benötigen wir zwei Transitive-Hülle-Berechnungen und sechs Matrixprodukte für Matrizen der Dimension $\frac{n}{2} \times \frac{n}{2}$ (nämlich $M_1 = D^*C$, $M_2 = BM_1$, $M_3 = EB$, $M_4 = M_3D^*$, $M_5 = M_1E$, $M_6 = GF$), plus den Aufwand für \vee , der $\leq c'n^2$ ist. Wir zeigen nun durch Induktion $(n=1\sqrt{})$, dass $T(n) \leq cM(n)$:

$$\begin{array}{ll} T(n) & \leq 2T(\frac{n}{2}) + 6M(\frac{n}{2}) + c'n^2 \\ & \leq 2cM(\frac{n}{2}) + 6M(\frac{n}{2}) + c'n^2 \quad | \text{Vor.:} \quad M(2n) \geq 4M(n) \\ & \qquad \qquad | \qquad \qquad \text{da } M(n) \geq n^2 \\ & \leq \frac{1}{4}(2c + 6 + 4c')M(n) \\ & \leq cM(n) \end{array}$$

falls $c \ge \frac{1}{4}(2c+6+4c')$, also falls $c \ge 3+2c'$.

Also $T(n) = \mathcal{O}(M(n))$.

