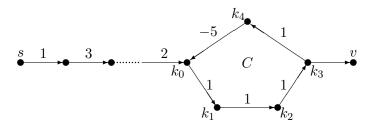
8.4 Digraphen mit negativen Kantengewichten

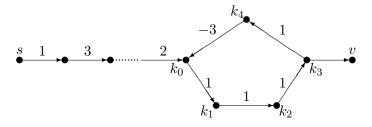
8.4.1 Grundsätzliches

Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0.



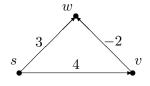
Sollte ein Pfad von s nach C und von C nach v existieren, so ist ein kiirzester Pfad von s nach v nicht definiert.

Falls aber die Gesamtlänge des Kreises $C \geq 0$ ist,



dann ist der kürzeste Pfad (der dann o.B.d.A. als kreisfrei genommen werden kann) wohldefiniert. Probleme gibt es also nur dann, wenn G einen Zyklus negativer Länge enthält.

Dijkstra's Algorithmus funktioniert bei negativen Kantenlängen nicht:



Bei diesem Beispielgraphen (der nicht einmal einen negativen Kreis enthält) berechnet der Dijkstra-Algorithmus die minimale Entfernung von s nach w fälschlicherweise als 3 (statt 2).

8.4.2 Modifikation des Bellman-Ford-Algorithmus

 $B_k[i]$ gibt die Länge eines kürzesten gerichteten s-i-Pfades an, der aus höchstens k Kanten besteht. Jeder Pfad, der keinen Kreis enthält, besteht aus maximal n-1 Kanten. In einem Graphen ohne negative Kreise gilt daher:

$$\forall i \in V : B_n[i] = B_{n-1}[i]$$

Gibt es hingegen einen (von s aus erreichbaren) Kreis negativer Länge, so gibt es einen Knoten $i \in V$, bei dem ein Pfad aus n Kanten mit der Länge $B_n[i]$ diesen Kreis häufiger durchläuft als jeder Pfad aus maximal n-1 Kanten der Länge $B_{n-1}[i]$. Demnach gilt in diesem Fall:

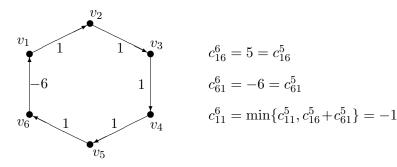
$$B_n[i] < B_{n-1}[i]$$

Man kann also in den Algorithmus von Bellman-Ford einen Test auf negative Kreise einbauen, indem man auch für alle $i \in V$ $B_n[i]$ berechnet und am Ende den folgenden Befehl einfügt:

for i := 1 to n do if $B_n[i] < B_{n-1}[i]$ then stop "Negativer Kreis" fi

8.4.3 Modifikation des Floyd-Algorithmus

Falls kein negativer Kreis existiert, funktioniert der Algorithmus weiterhin korrekt.



 \Rightarrow der Graph enthält einen negativen Kreis, gdw ein $c_{ii}^n < 0$ existiert.

Man kann also in den Algorithmus von Floyd einen Test auf negative Kreise einbauen, indem man am Ende den folgenden Befehl einfügt:

for i:=1 to n do if $c_{ii}^n<0$ then stop "Negativer Kreis" fi

8.4.4 Der Algorithmus von Johnson

Definition 197

Sei $d:A\to\mathbb{R}\cup\{+\infty\}$ eine Distanzfunktion. Eine Abbildung

$$r:V\to\mathbb{R}$$

heißt Rekalibrierung, falls gilt:

$$(\forall (u, v) \in A)[r(u) + d(u, v) \ge r(v)]$$

Beobachtung: Sei r eine Rekalibrierung (für d). Setze d'(u, v) := d(u, v) + r(u) - r(v). Dann gilt:

$$\mathbf{d}'(u,v) \ge 0$$

Sei $u = v_0 \rightarrow \cdots \rightarrow v_k = v$ ein Pfad. Dann ist:

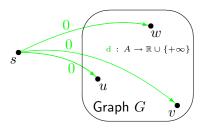
$$\operatorname{d-L"ange} := \sum_{i=0}^{\kappa-1} \operatorname{d}(v_i, v_{i+1})$$

Demnach ist:

$$\begin{aligned} \mathbf{d}'\text{-Länge} &= \sum_{i=0}^{k-1} \mathbf{d}'(v_i, v_{i+1}) \\ &= \sum_{i=0}^{k-1} \left(\mathbf{d}(v_i, v_{i+1}) + r(v_i) - r(v_{i+1}) \right) \\ &= \sum_{i=0}^{k-1} \mathbf{d}(v_i, v_{i+1}) + r(v_0) - r(v_k) \end{aligned}$$

Also ist ein d-kürzester Pfad von $u = v_0$ nach $v = v_k$ auch ein d'-kürzester Pfad und umgekehrt. Nach einer Rekalibrierung kann man also auch die Algorithmen anwenden, die eine nichtnegative Distanzfunktion d voraussetzen (z.B. Dijkstra).

Berechnung einer Rekalibrierung:



Füge einen neuen Knoten s hinzu und verbinde s mit jedem anderen Knoten $v \in V$ durch eine Kante der Länge 0.

Berechne sssp von s nach allen anderen Knoten $v \in V$ (z.B. mit Bellman-Ford). Sei r(v) die dadurch berechnete Entfernung von s zu $v \in V$. Dann ist r eine Rekalibrierung, denn es gilt:

$$r(u) + d(u, v) \ge r(v)$$
.

8.5 Zusammenfassung

	$d \ge 0$	d allgemein
sssp	D (Fibonacci): $\mathcal{O}(m + n \cdot \log n)$	B-F: $\mathcal{O}(n \cdot m)$
apsp	D: $\mathcal{O}(nm + n^2 \log n)$ F: $\mathcal{O}(n^3)^{(*)}$	$ \begin{array}{c} J \colon \mathcal{O}(n \cdot m + n^2 \log n) \\ F \colon \mathcal{O}(n^3) \end{array} $

 $\mathbf{Bemerkung}^{(*)}\mathbf{:}$ In der Praxis ist der Floyd-Algorithmus für kleine n besser als Dijkstra's Algorithmus.

