Korrektheit: ist klar.

Zeitkomplexität:

- n ExtractMin
- $\mathcal{O}(m)$ sonstige Operationen inclusive *DecreaseKey*

Implementierung der Priority Queue mittels Fibonacci-Heaps:

Initialisierung	$\mathcal{O}(n)$
ExtractMins	$\mathcal{O}(n\log n) (\leq n \text{ Stück})$
DecreaseKeys	$\mathcal{O}(m) (\leq m \; St \ddot{u} c k)$
Sonstiger Overhead	$\mathcal{O}(m)$

Satz 192

Sei G=(V,E) ein ungerichteter Graph (zusammenhängend, einfach) mit Kantengewichten w. Prim's Algorithmus berechnet, wenn mit Fibonacci-Heaps implementiert, einen minimalen Spannbaum von (G,w) in Zeit $\mathcal{O}(m+n\log n)$ (wobei $n=|V|,\ m=|E|$). Dies ist für $m=\Omega(n\log n)$ asymptotisch optimal.

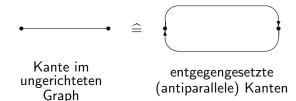
Beweis:

s.o.

8. Kürzeste Pfade

8.1 Grundlegende Begriffe

Betrachte Digraph G = (V, A) oder Graph G = (V, E).



Distanzfunktion: $d: A \longrightarrow \mathbb{R}_0^+ \cup \{+\infty\}$ (bzw. $\longrightarrow \mathbb{R} \cup \{+\infty\}$) O.B.d.A.: $A = V \times V$, $d(x,y) = +\infty$ für Kanten, die eigentlich nicht vorhanden sind

dis(v, w) := Länge eines kürzesten Pfades von v nach w $\in \mathbb{R}_0^+ \cup \{+\infty\}.$

Arten von Kürzeste-Pfade-Problemen:

- single-pair-shortest-path (spsp). Beispiel: Kürzeste Entfernung von München nach Frankfurt.
- 2 single-source-shortest-path: gegeben G, d und $s \in V$, bestimme für alle $v \in V$ die Länge eines kürzesten Pfades von s nach v (bzw. einen kürzesten Pfad von s nach v) (sssp). Beispiel: Kürzeste Entfernung von München nach allen anderen Großstädten.
- 3 all-pairs-shortest-path (apsp). Beispiel: Kürzeste Entfernung zwischen allen Großstädten.

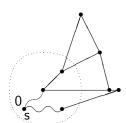
Bemerkung: Wir kennen keinen Algorithmus, der das single-pair-shortest-path berechnet, ohne nicht gleichzeitig (im worst-case) das single-source-shortest-path-Problem zu lösen.

8.2 Das single-source-shortest-path-Problem

Zunächst nehmen wir an, dass d > 0 ist. Alle kürzesten Pfade von a nach b sind o.B.d.A. einfache Pfade.

8.2.1 Dijkstra's Algorithmus

Gegeben: $G = (V, A), (A = V \times V),$ Distanzfunktion $d: A \to \mathbb{R}_0^+ \cup \{+\infty\}$, Startknoten s, G durch Adjazenzlisten dargestellt.



```
algorithm sssp:=
S := \{s\}; \operatorname{dis}[s] := 0; initialisiere eine Priority Queue PQ, die
alle Knoten v \in V \setminus \{s\} enthält mit Schlüssel \operatorname{dis}[v] := \operatorname{d}(s,v)
for alle v \in V - \{s\} do from[v] := s od
while S \neq V do
     v := ExtractMin(PQ)
     S := S \cup \{v\}
     for alle w \in V \setminus S, d(v, w) < \infty do
           if dis[v] + d(v, w) < dis[w] then
                DecreaseKey(w, dis[v] + d(v, w))
                co DecreaseKey aktualisiert dis[w] oc
                from[w] := v
           fi
     od
od
```

Seien n = |V| und m = die Anzahl der wirklichen Kanten in G. Laufzeit (mit Fibonacci-Heaps):

Initialisierung:	$\mathcal{O}(n)$
ExtractMin:	$n \cdot \mathcal{O}(\log n)$
Sonstiger Aufwand:	$m \cdot \mathcal{O}(1)$ (z.B. DecreaseKey)

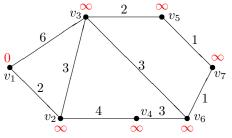
 \Rightarrow Zeitbedarf also: $|\mathcal{O}(m + n \log n)|$

Korrektheit: Wir behaupten, dass in dem Moment, in dem ein $v \in V \setminus \{s\}$ Ergebnis der *ExtractMin* Operation ist, der Wert $\mathrm{dis}[v]$ des Schlüssels von v gleich der Länge eines kürzesten Pfades von s nach v ist.

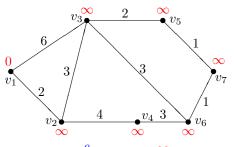
Beweis:

[durch Widerspruch] Sei $v \in V \setminus \{s\}$ der erste Knoten, für den diese Behauptung nicht stimmt, und sei

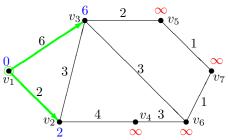
ein kürzester Pfad von s nach v, mit einer Länge < $\mathrm{dis}[v]$. Dabei sind $s_1,\ldots,s_r\in S$, $v_1\notin S$ [r=0 und/oder q=0 ist möglich]. Betrachte den Pfad $\overset{s}{\longleftarrow}\overset{s_1}{\longleftarrow}\overset{v_1}{\longleftarrow}$; seine Länge ist < $\mathrm{dis}[v]$, für $q\geq 1$ (ebenso für q=0) ist also $\mathrm{dis}[v_1]<\mathrm{dis}[v]$, im Widerspruch zur Wahl von v.



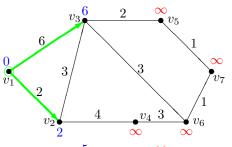
gegeben Graph G; v_1 ist der Startknoten; setze v_1 als Bezugsknoten; setze $\mathrm{dis}[v_1]=0$; setze $\mathrm{dis}[\mathrm{Rest}]=+\infty$;

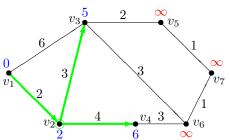


gegeben Graph G; v_1 ist der Startknoten; setze v_1 als Bezugsknoten; setze $\mathrm{dis}[v_1]=0$; setze $\mathrm{dis}[\mathrm{Rest}]=+\infty$;



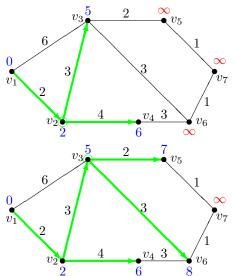
$$\begin{split} &\text{setze } \operatorname{dis}[v_2] = 2; \\ &\text{markiere } (v_1, v_2); \\ &\text{setze } \operatorname{dis}[v_3] = 6; \\ &\text{markiere } (v_1, v_3); \\ &\text{setze } v_2 \text{ als Bezugsknoten,} \\ &\text{da} \operatorname{dis}[v_2] \text{ minimal;} \end{split}$$





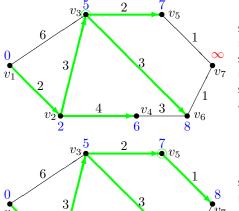
setze $\operatorname{dis}[v_2]=2;$ markiere $(v_1,v_2);$ setze $\operatorname{dis}[v_3]=6;$ markiere $(v_1,v_3);$ setze v_2 als Bezugsknoten, da $\operatorname{dis}[v_2]$ minimal;

setze $\operatorname{dis}[v_3]=2+3=5;$ markiere $(v_2,v_3);$ unmarkiere $(v_1,v_3);$ setze $\operatorname{dis}[v_4]=2+4=6;$ markiere $(v_2,v_4);$ setze v_3 als Bezugsknoten, da $\operatorname{dis}[v_3]$ minimal;



setze $\operatorname{dis}[v_3]=2+3=5;$ markiere $(v_2,v_3);$ unmarkiere $(v_1,v_3);$ setze $\operatorname{dis}[v_4]=2+4=6;$ markiere $(v_2,v_4);$ setze v_3 als Bezugsknoten, da $\operatorname{dis}[v_3]$ minimal;

setze $\operatorname{dis}[v_5]=5+2=7;$ markiere $(v_3,v_5);$ setze $\operatorname{dis}[v_6]=5+3=8;$ markiere $(v_3,v_6);$ setze v_4 , dann v_5 als Bezugsknoten;



setze $dis[v_5] = 5 + 2 = 7$; markiere (v_3, v_5) ; setze $dis[v_6] = 5 + 3 = 8$; markiere (v_3, v_6) ; setze v_4 , dann v_5 als Bezugsknoten;

setze $dis[v_7] := 7 + 1 = 8;$ markiere (v_5, v_7) ; alle Knoten wurden erreicht: ⇒ Algorithmus zu Ende

Beobachtung:

- ExtractMin liefert eine (schwach) monoton steigende Folge von Schlüsseln dis[·];
- Die Schlüssel $\neq \infty$ in PQ sind stets $< \operatorname{dis}[v] + C$, wobei vdas Ergebnis der vorangehenden ExtractMin-Operation (bzw. s zu Beginn) und $C := \max_{(u,w) \in A} \{ \operatorname{dis}(u,w) \}$ ist.

Satz 194

Dijkstra's Algorithmus (mit Fibonacci-Heaps) löst das single-source-shortest-path-Problem in Zeit $\mathcal{O}(m + n \log n)$.

8.2.2 Bellman-Ford-Algorithmus

Wir setzen (zunächst) wiederum voraus:

$$d \geq 0$$
.

Dieser Algorithmus ist ein Beispiel für dynamische Programmierung.

Sei $B_k[i] := \text{Länge eines kürzesten Pfades von } s \text{ zum Knoten } i$, wobei der Pfad höchstens k Kanten enthält.

Gesucht ist $B_{n-1}[i]$ für $i=1,\ldots,n$ (o.B.d.A. $V=\{1,\ldots,n\}$).

Initialisierung:

$$B_1[i] := \begin{cases} \operatorname{d}(s,i) &, \text{ falls } \operatorname{d}(s,i) < \infty, i \neq s \\ 0 &, \text{ falls } i = s \\ +\infty &, \text{ sonst} \end{cases}$$

Iteration:

$$\begin{aligned} & \text{for } k := 2 \text{ to } n-1 \text{ do} \\ & \text{for } i := 1 \text{ to } n \text{ do} \end{aligned}$$

$$B_k[i] := \begin{cases} 0 & \text{, falls } i = s \\ \min_{j \in N^{-1}(i)} \{B_{k-1}[i], B_{k-1}[j] + \operatorname{d}(j, i)\} & \text{, sonst} \end{cases}$$
 d

od

od

Bemerkung: $N^{-1}(i)$ ist die Menge der Knoten, von denen aus eine Kante zu Knoten i führt.

Korrekheit:

klar (Beweis durch vollständige Induktion)

Zeitbedarf:

Man beachte, dass in jedem Durchlauf der äußeren Schleife jede Halbkante einmal berührt wird.

Satz 195

Der Zeitbedarf des Bellman-Ford-Algorithmus ist $\mathcal{O}(n \cdot m)$.

Beweis:

S.O.

8.3 Floyd's Algorithmus für das all-pairs-shortest-path-Problem

Dieser Algorithmus wird auch als "Kleene's Algorithmus" bezeichnet. Er ist ein weiteres Beispiel für dynamische Programmierung.

Sei
$$G=(V,E)$$
 mit Distanzfunktion $\mathrm{d}:A\to\mathbb{R}_0^+\cup\{+\infty\}$ gegeben. Sei o.B.d.A. $V=\{v_1,\ldots,v_n\}$.

Wir setzen nun

 $c_{ii}^k := L$ änge eines kürzesten Pfades von v_i nach v_i , der als innere Knoten (alle bis auf ersten und letzten Knoten) nur Knoten aus $\{v_1, \ldots, v_k\}$ enthält.


```
\begin{array}{l} \text{algorithm floyd} := \\ \text{for alle } (i,j) \text{ do } c_{ij}^{(0)} := \operatorname{d}(i,j) \text{ od} \qquad \text{co } 1 \leq i,j \leq n \text{ oc} \\ \text{for } k := 1 \text{ to } n \text{ do} \\ \text{ for alle } (i,j), \ 1 \leq i,j \leq n \text{ do} \\ c_{ij}^{(k)} := \min \left\{ c_{ij}^{(k-1)}, \ c_{ik}^{(k-1)} + c_{kj}^{(k-1)} \right\} \\ \text{ od} \\ \text{od} \end{array}
```

Laufzeit: $\mathcal{O}(n^3)$

Korrektheit:

Zu zeigen: $c_{ij}^{(k)}$ des Algorithmus $=c_{ij}^{k}$ (damit sind die Längen der kürzesten Pfade durch $c_{ij}^{(n)}$ gegeben).

Beweis:

Richtig für k=0. Induktionsschluss: Ein kürzester Pfad von v_i nach v_i mit inneren Knoten $\in \{v_1, \dots, v_{k+1}\}$ enthält entweder v_{k+1} gar nicht als inneren Knoten, oder er enthält v_{k+1} genau einmal als inneren Knoten. Im ersten Fall wurde dieser Pfad also bereits für $c_{ij}^{(k)}$ betrachtet, hat also Länge $= c_{ij}^{(k)}$. Im zweiten Fall setzt er sich aus einem kürzesten Pfad P_1 von v_i nach v_{k+1} und einem kürzesten Pfad P_2 von v_{k+1} nach v_i zusammen, wobei alle inneren Knoten von P_1 und $P_2 \in \{v_1, \dots, v_k\}$ sind. Also ist die Länge des Pfades = $c_{i,k+1}^{(k)} + c_{k+1,i}^{(k)}$.

Satz 196

Floyd's Algorithmus für das all-pairs-shortest-path-Problem hat Zeitkomplexität $\mathcal{O}(n^3)$.

