6 Supervised Overlay Networks

Every application run on multiple machines needs a mechanism that allows the machines to exchange
information. An easy way of solving this problem is that every machine knows the domain name or IP
address of every other machine. While this may work well for a small number of machines, large-scale
distributed applications such as file sharing or grid computing systems need a different, more scalable
approach: instead of forming a clique (where everybody knows everybody else), each machine should
only be required to know some small subset of other machines. This graph of knowledge can be seen
as a logical network interconnecting the machines, which is also known as an overlay network. A
prerequisite for an overlay network to be useful is that it has good topological properties. Among the
most important are:

e Degree: ldeally, the degree should be kept small to avoid a high update cost if a node enters or
leaves the system.

e Diameter: The diameter should be small to allow the fast exchange of information between any
pair of nodes in the network.

e Expansion: The expansion of a graph G = (V| F) is defined as

B(G) = min L(U”

~veviuivize |U|
where I'(U) is the set of neighbors of U. To ensure a high fault tolerance, the expansion should
be as large as possible.

The question is how to realize such an overlay network in a distributed environment where peers may
continuously enter and leave the system. This will be the topic of our investigations for the coming
weeks.

We start in this section with the study of supervised overlay networks. These networks were
investigated, e.g., in [4, 5, 6]. In a supervised overlay network, the topology is under the control of
a special machine (or node) called the supervisor. All nodes that want to join or leave the network
have to declare this to the supervisor, and the supervisor will then take care of integrating them into or
removing them from the network. All other operations, however, may be executed without involving
the supervisor. In order for a supervised network to be highly scalable, two central requirements have
to be fulfilled:

1. The supervisor needs to store at most a polylogarithmic amount of information about the network
at any time (i.e., if there are n nodes in the network, storing contact information about O(log2 n)
of these nodes would be fine, for example), and

2. it takes at most a constant number of communication rounds to include a new node into or
exclude an old node from the network.

A communication round is over once all the packets that existed at the beginning of the communica-
tion round have been delivered. The packets generated by these packets will participate in the next
communication round.

We show in the following how these requirements can be achieved, using a general approach
called the recursive labeling approach. To simplify the presentation, we assume that all departures are
graceful, i.e., every node leaving the system informs the supervisor about this and may provide some
additional information simplifying the task of the supervisor to repair the network.

6.1 The recursive labeling approach

In the recursive labeling approach, the supervisor assigns a label to every node that wants to join the
system. The labels are represented as binary strings and are generated in the following order:

0,1,01,11,001,011,101,111,0001,0011,0101,0111, 1001, 1011, . ..

Basically, when stripping off the least significant bit, then the supervisor is first creating all binary
numbers of length 0, then length 1, then length 2, and so on. More formally, consider the mapping
¢ : INg — {0,1}* with the property that for every z € INy with binary representation (4. ..xg)2
(where d is minimum possible),

Ux) = (Tg-1...Toxq) -

Then ¢ generates the sequence of labels displayed above. In the following, it will also be helpful to
view labels as real numbers in [0, 1). Let the function r : {0, 1}* — [0, 1) be defined so that for every
label ¢ = (5162 .. gd) c {0, 1}*,

t;

i

r(l) = ;

Then the sequence of labels above translates into

[N}

0, 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, 5/16, 7/16, 9/16, ...

Thus, the more labels are used, the more densely the [0, 1) interval will be populated. Furthermore, we
will use the function b : [0,1) — {0, 1}* that translates a real number back into a label.

When using the recursive labeling approach, the supervisor aims to maintain the following condi-
tion at every step:

Condition 6.1 The set of labels used by the nodes is {{(0),¢(1),...,¢(n— 1)}, where n is the current
number of nodes in the system.

This condition is preserved when using the following simple strategy:

e Whenever a new node v joins the system and the current number of nodes is n, the supervisor
assigns the label /(n) to v and increases n by 1.

e Whenever a node w with label ¢ wants to leave the system, the supervisor asks the node with
currently highest label ¢(n — 1) to change its label to ¢ and reduces n by 1.

How does this strategy help us with maintaining dynamic overlay networks? We will see how this
works in the following subsections. To keep things simple, we start with a cycle.

6.2 Recursively maintaining a cycle

We start with some notation. In the following, the label assigned to some node v will be denoted as
¢,. Given n nodes with unique labels, we define the predecessor pred(v) of node v as the node w for
which r(¢,,) is closest from below to r(¢,), and we define the successor succ(v) of node v as the node
w for which r(¢,,) is closest from above to node r(¢,) (viewing [0, 1) as a ring in both cases). Given
two nodes v and w, we define their distance as

d(v,w) = min{(1 4+ r(¢,) — r(€,)) mod 1, (1+r(l,) —r(¢,)) mod 1} .
In order to maintain a cycle among the nodes, we simply have to maintain the following condition:
Condition 6.2 Every node v in the system is connected to pred(v) and succ(v).

Now, suppose that the labels of the nodes are generated via the recursive strategy above. Then we
have the following properties:

Lemma 6.3 Let n be the current number of nodes in the system, and let i = 2U°¢™ Then for every
nodev € V:

o |0,| < [logn]| and
e (v, pred(v)) € [1/(2n),1/n] and §(v,succ(v)) € [1/(2n),1/7).

So the nodes are approximately evenly distributed in [0, 1) and the number of bits for storing a
label is almost as low as it can be without violating the uniqueness requirement. But how does the
supervisor maintain the cycle? This is implied by the following demand, where n is again the current
number of nodes in the system.

Condition 6.4 At any time, the supervisor stores the contact information of pred(v), v, succ(v), and
succ(succ(v)) where v is the node with label {(n — 1).

In order to satisfy Conditions 6.2 and 6.4, the supervisor performs the following actions, where v
is the node with label /(n — 1) in the system.

If a new node w joins, then the supervisor
e informs w that /(n) is its label, succ(v) is its predecessor, and succ(succ(v)) is its successor,
e informs succ(v) that w is its new successor,
e informs succ(succ(v)) that w is its new predecessor,
e asks succ(succ(v)) to send its successor information to the supervisor, and
e setsn =n+ 1.

If an old node w leaves and reports ¢,,, pred(w), and succ(w) to the supervisor (recall that we are
assuming graceful departures), then the supervisor

e informs v (the node with label ¢(n — 1)) that ¢,, is its new label, pred(w) is its new predecessor,
and succ(w) is its new successor,

e informs pred(w) that its new successor is v,

e informs succ(w) that its new predecessor is v,

e informs pred(v) that succ(v) is its new successor,

e informs succ(v) that pred(v) is its new predecessor,

e asks pred(v) to send its predecessor information to the supervisor and to ask pred(pred(v)) to
send its predecessor information to the supervisor, and

e setsn=mn—1.

A detailed implementation of the leave and join operations can be found in Figures 1 and 2. In this
implementation, we assume for simplicity that references to relay points can be freely exchanged, i.e.,
identities are not needed. It will be an assignment to implement the join and leave operations with the
identity concept. The following lemma is not difficult to check and will also be an assignment.

Lemma 6.5 The join and leave operations preserve Conditions 6.2 and 6.4.

Hence, we arrive at the following theorem, which implies that our central requirements on a super-
visor are kept.

Theorem 6.6 At any time, the supervisor only needs to store the current value of n and a constant
amount of contact information, and the join and leave operations only need a constant amount of
messages and three communication rounds to complete.

6.3 Concurrency

The above scheme only allows the supervisor to execute join and leave operations in a strictly sequen-
tial manner because it only has sufficient information to integrate or remove one peer at a time. In order
to be able to handle d join or leave requests in parallel, we extend Condition 6.2 with the following
rule:

Condition 6.7 In addition to Condition 6.2, every node v in the system is connected to its dth prede-
cessor pred;(v) and its dth successor succy(v).

Furthermore, given that v is the node with label £(n — 1), Condition 6.4 needs to be extended to:

Condition 6.8 Af any time, the supervisor stores the contact information of v, the 2d successors of v,
and the 3d predecessors of v.

These conditions are preserved in the following way.

. Leave(?: Int, pw: Relay, sw: Relay)
Supervisor { i (n > O)p (¥ P A
. if(n=1)

Supervisor() { o= 1£IULL v := NULL
n:=0 #counter ' T
v:=NULL # node with label {(n — 1)) elj: {‘_ NULL, ssv := NULL
pv = NULL # pred(v)

remove v from the system
sv:= NULL # succ(v) v setSuce(sv)
ssv:= NULL # succ(succ(v)) sv setPred(pv)
} if (pw = v) pw :=pv
.) if (sw = v) sw := sv
Jomi(fu(). lfjlgil ?{{ # move v into position of w
n—(_ w0 : if (v # w) {
wv ._sz]up » W, W v «— setup(¥, pw, sw)
1; ';_w pw «— setSucc(v)
o sw « setPred(v)
svi=w)
! el::? = # update pointers
if (pv =w) pv:=v
w «— setup(£(n), sv, $sv) if (50 = w) 50 = v
sv «+ setSucc(w) S50 — sp ’
ssv — setPred(w) . ‘.—_pv
fj v;:wsv v := pv «— getPred()
S0 = ssv } pv := pv « getPredPred()
550 1= 550 «+— getSucc() noi—m—1
} v
n:=n+1)
:)

Figure 1: Operations needed by the supervisor to maintain a cycle.

Concurrent Join Operation. In the following, let v be the node with label ¢(n — 1). Let succ;(v)
denote the ith successor of v on the cycle and pred;(v) denote the ith predecessor of v on the cycle.

Let the d new peers be wy, ws, ... wy. Then the supervisor integrates w; between succ;(v) and
succ;41(v) for every i € {1,...,d}. As is easy to check, this will violate Condition 6.7 for the 2d
closest successors of v and the d — 2 closest predecessors of v. But since the supervisor knows all
of these nodes, it can directly inform them about the change. In order to repair Condition 6.8, the
supervisor will request information about the dth successor from the d furthest successors of v and
will set v to w,.

Concurrent Leave Operation. Let the d peers that want to leave the system be w;, ws, . .., wy. For
simplicity, we assume that they are outside of the peers known to the supervisor and that they are not
in the neighborhood of each other, but our strategy below can also be extended to these cases. The
strategy of the supervisor is to replace w; by predQ(i_l)(v) for every 7. As is easy to check, this will

setup(? : Int, p : Relay, s : Relay) {

Peer { label := ¢
pred :=p
Peer() { succ = s

label := 0 # label of peer v
succ := NULL # succ(v)
pred := NULL # pred(v)

}

setSucc(w: Relay) {

sr :=new Relay() # relay point of v succ :=w
} }
setPred(w: Relay) {
Join(s: Relay) { # relay of supervisor pred ;= w
if (s # NULL) { }

s <« Join(sr)
super := s # current supervisor getSucc(): Relay {
} return succ

} }

getPred(): Relay {

Leave() { return pred
if (super # NULL) }
super «— Leave(label, pred, succ)
super := NULL getPredPred(): Relay {
} return pred < getPred()

}

Figure 2: Operations needed by a peer to maintain a cycle.

violate Condition 6.7 for the d closest successors of v and the 3d closest predecessors of v. But since
the supervisor knows all of these nodes, it can directly inform them about the change. In order to repair
Condition 6.7, the supervisor will request information about the dth predecessor from the d furthest
predecessors of v and their dth predecessors and will set v to pred,,(v).

The operations have the following performance.

Theorem 6.9 The supervisor needs at most O(d) work and O(1) time (given that the work can be
done in parallel) to process d join or leave requests.

6.4 Multiple Supervisors

If a supervised network becomes so large that a single supervisor cannot manage all of the join and
leave requests, one can easily extend the supervised cycle to multiple supervisors. Suppose that we
have k supervisors Sy, S, - - - Sk—1. Then the [0, 1)-ring is split into the k regions R; = [(i—1)/k,i/k),
1 < ¢ < k, and supervisor S; is responsible for region R;. Every supervisor manages its region as
described for a single supervisor above, i.e., it treats it like a [0, 1)-interval, except for the borders,
and the borders are maintained by communicating with the neighboring supervisors on the ring. The
supervisors themselves form a completely interconnected network.

6

Each time a new node v wants to join the system via some supervisor .S;, S; forwards it to a random
supervisor to integrate v into the system. Each time a node v under some supervisor S; wants to leave
the system, S; replaces that node with the last node it inserted into R;. Using standard Chernoff
bounds, we get:

Theorem 6.10 Let n be the total number of nodes in the system. If the join-leave behavior of the
nodes is independent of their positions, then it holds for every i € {1,... k} that the number nodes

currently placed in R; is in the range n/k + O(y/(n/k) log k + log k), with high probability.

Hence, if n is sufficiently large compared to k, then the multi-supervised cycle has basically the
same properties as the single-supervised cycle above. If the join-leave behavior of the nodes is adver-
sarial, then the rules of assigning every new node to the least loaded region R; and replacing every
leaving node with the node inserted last into the most loaded region R; will keep a balanced distribu-
tion of the nodes among the regions.

6.5 Recursively maintaining a tree

The cycle has a low degree but its diameter and expansion are very bad. The simplest way of achieving
a low diameter is to use a tree. Thus, next we discuss how to recursively maintain a tree. As for
the cycle, our basic approach will be to preserve something similar to Condition 6.1, with the only
difference that we want to keep the labels from ¢(1) to ¢(n) (instead of £(0) to ¢(n — 1)). We will also
preserve Condition 6.2, though the edges implied by this condition will not be part of the tree. But
they will tremendously simplify the task of maintaining a tree, as we will see.

Recall that a binary tree can be stored in an array by connecting position x to positions 2z and
2z + 1 for any x > 1. In our context with node labels, this would mean that each node with label
(¢1 . ..¢4) has to be connected to the nodes with labels (¢ ... ¢4 12¢;) where x € {0, 1} (see the way
labels can be interpreted as binary numbers in the recursive labeling approach). Thus, the following
connectivity information has to be preserved.

Condition 6.11 Every node v in the system with label {,, = ({; ... {;) is connected to
1. pred(v) and succ(v) (to form a cycle) and

2. the nodes with labels ({y ...0lq_21), ({1...Lq-101), and ({y...L;_111), if they exist (to form a
tree).

Suppose that this condition is kept at any time. Then the following lemma follows.
Lemma 6.12 At any time, the n nodes form a binary tree of depth [logn| — 1.

Proof. Consider a binary tree with n nodes, and label the edge to the left child of any node “0” and
to the right child of any node “1”. Let the label ¢, of every node v in this tree be the sequence of
edge labels when moving along the unique path from the root to v. Then every node v with label
(01 ...4y) is connected to the node with label (¢; ... ¢,_1) (its parent), if it exists, and is also connected
to the nodes with labels (¢; ...¢40) and (¢; ... ¢41) (its children), if they exist. Defining ¢, as ¢, (the
label of v in our network) without the least significant bit, we see that Condition 6.11(2) fulfills the

connectivity requirements of a tree. Since it follows from Lemma 6.3 that every node has a label of
size at most [log n], the depth of the tree can be at most [logn]| — 1. 0

Next we specify the connectivity information the supervisor needs in order to maintain the tree.

Condition 6.13 Az any time, the supervisor stores the contact information of pred(v), v, succ(v), and
succ(succ(v)) where v is the node with label {(n).

Hence, the supervisor does not need any further connectivity information beyond what it needs for
the cycle. In order to satisfy Conditions 6.11 and 6.13, the supervisor performs the following actions.
If a new node w joins, then the supervisor

e informs w that (n + 1) is its label, succ(v) is its predecessor, and succ(succ(v)) is its successor,
and succ(v) resp. succ(succ(v)) is its parent (depending on £(n + 1)),

e informs succ(v) that w is its new successor,
e informs succ(succ(v)) that w is its new predecessor,
e asks succ(succ(v)) to send its successor information to the supervisor, and

e setsn=n-+ 1.

Hence, from the point of view of the supervisor, the inclusion of a new node is almost identical to the
cycle.

If an old node w leaves and reports ¢,,, pred(w), succ(w), parent(w), Ichild(w), and rchild(w) to
the supervisor, then the supervisor again executes almost the same steps as for the cycle.

When using the code for the supervisor given in Figure 3 and the code for the peers given in
Figure 4, it is not difficult to prove the following lemma. Notice that for simplicity, we assume again
that relay points can be freely exchanged.

Lemma 6.14 The join and leave operations preserve Conditions 6.11 and 6.13.
Hence, we arrive at the following theorem.

Theorem 6.15 At any time, the supervisor only needs to store the current value of n and a constant
amount of contact information, and the join and leave operations only need a constant amount of
messages and three communication rounds to complete.

Broadcasting

The dynamic tree can be used for efficient broadcasting. Suppose that some node v wants to broadcast
information to all other nodes in the system. One way of solving this is that it forwards the broadcast
message directly to the supervisor (so that the supervisor can authorize the broadcast, for example)
and the supervisor initiates sending the broadcast message down the tree. A prerequisite for this is that
the supervisor remembers the node with label 1, called root by it. If this is the case, then the code in
Figure 5 will be executed correctly.

Inspecting the code, we arrive at the following result, which is optimal for broadcasting in constant
degree networks. Here, the dilation means the longest path taken by a message in the broadcast
operation.

Theorem 6.16 The broadcast operation has a dilation of O(logn) and requires a work of O(n).

Supervisor {

Supervisor() {
n:=0 #counter
v:= NULL # node with label £(n)
pv:=NULL # pred(v)
sv:=NULL #succ(v)
ssv := NULL # succ(succ(v))

Join(w: Relay) {
n:=n+1
ifn=1){
w « setup(0, w, w, NULL, NULL, NULL)
pUi=w
vi=w
sV = w
SSV 1= w
}else {
if (4(n)&2 =0){
w « setup({(n), sv, ssv, ssv, NULL, NULL)
ssv «— setRightChild(w)
}else {
w «— setup(4(n), sv, ssv, sv, NULL, NULL)
sv «— setLeftChild(w)
}
sv «— setSucc(w)
ssv «— setPred(w)

pU = SV
vi=w

SV := 88V

88V 1= ssv <« getSucc()

Leave({: Int, pw: Relay, sw: Relay,
Sfw,lcw, rcw: Relay) {
if (n > 0) {
if(n=1{
pv := NULL, v := NULL
sv := NULL, ssv := NULL
}else {
remove v from tree
if (¢(n — 1)&2 = 0) sv < setRightChild(NULL)
else pv « setLeftChild(NULL)
pv «— setSucc(sv)
sv <« setPred(pv)
if (pw = v) pw = pv
if (sw = v) sw := sv
if (lcw = v) lcw := NULL
if (rcw = v) rcw := NULL
move v into position of w
if (v # w) {
v« setup(¢, pw, sw, fw, lcw, rcw)
pw «— setSucc(v)
sw «— setPred(v)
if (&2 = 0)
fw « setRightChild(v)
else
fw «— setLeftChild(v)
if (lcw # NULL) lcw « setParent(v)
if (rcw # NULL) rcw < setParent(v)
}
update pointers
if (pv =w)pv :=wv
if (sv = w) sv:=wv
S$SU 1= SV
sU = pv
v 1= pv « getPred()
pv := pv « getPredPred()
}
n

=n—1

Figure 3: Operations needed by the supervisor to maintain a tree.

Maintaining a fault-tolerant tree

9

Recall that in order to store a tree in an array, we connect position x to positions 2z and 2z + 1 for any
x > 1. Such a tree can easily be made fault-tolerant by demanding that each position x be connected
to all positions in the set {2z, ...,2(x+1) — 1} for some parameter r € IN that we call its redundancy.
If » = 1, we just arrive at the binary tree, but when choosing » > 1, each node has r parents instead
of just 1. Hence, as long as not all r parents of an alive node are defunct, all alive nodes can still
reach one of the r topmost nodes in the array. Transforming to our use of node labels, we arrive at the
following condition for the nodes.

Condition 6.17 For some fixed v € IN, every node v in the system with label {, = ({; ...
connected to

1. its closest r predecessors and successors in [0, 1) (to form a redundant cycle) and

2. all nodes w with labels (0} ...t} so that for x' = (UL0).. . Lg_1)s and x = (Ugly ... Lg_1)s it

Peer {
Peer() {

label := 0 # label of peer v
succ := NULL # succ(v)
pred := NULL # pred(v)
parent := NULL
lchild := NULL
rchild := NULL
sr:=new Relay() # relay point of v

}

Join(s: Relay) {
if (s # NULL) {
s — Join(sr)
super := s # current supervisor
}
¥

Leave() {
if (super # NULL)

super := NULL

}

setup(? : Int, p : Relay, s : Relay, f: Relay,
le: Relay, re: Relay) {
label .=/
pred :=p
suce := 8
parent := f
lehild :=lc
rchild ;= rc

super «— Leave(label, pred, succ, parent, lchild, rchild)

setSucc(w: Relay) {

sSucc = w

}

setPred(w: Relay) {
pred == w

}

setParent(w: Relay) {
parent ;= w

}

setLeftChild(w: Relay) {
lchild == w

}

setRightChild(w: Relay) {
rchild := w
}

getSucc(): Relay {
return succ
¥

getPred(): Relay {
return pred
}

getPredPred(): Relay {
return pred «— getPred()
}

Figure 4: Operations needed by a peer to maintain a tree.

holds that ' € {x —r +1,...,x} (w is one of the parents of v) or &’ € {2z,...,2(x +7r) — 1}

(w is one of the children of v).

The supervisor has to maintain the following connections to efficiently update such a tree.

Condition 6.18 At any time, the supervisor stores the contact information of v and its 2r closest

predecessors and its 2 closest successors, where v is the node with label {(n).

2r predecessors are needed to keep track of the r parents of a tree node, and r successors are
needed (with the predecessors) to maintain a redundant ring. As mentioned above, this structure can
tolerate many defunct nodes without running into problems when broadcasting information between

the alive nodes. More details are left to the reader.

10

operations of supervisor

Broadcast(m : Message) {
root < sendDown(m)

}

operations of peer

Broadcast(m : Message) {
if (super # NULL) super < Broadcast(m)

}

sendDown(m : Message) {
if (Ichild ## NULL) Ichild < sendDown(m)
if (rchild # NULL) rchild < sendDown(m)

handle broadcast message

}

Figure 5: Implementation of a broadcast operation in the dynamic tree.

6.6 Recursively maintaining a de Bruijn graph

Next, we show how to maintain a supervised de Bruijn network [5]. Recall the definition of a de
Bruijn graph. In this definition, every node with label (1, ..., z4) € {0, 1}% is connected to the nodes
(0,21,...,74) and (1,21, ..., 14). When interpreting every node with label (1, ..., 74) € {0,1}¢ as
apoint x = > ;51 ;/ 2" € [0,1) and letting d — oo, we arrive at the following continuous form of the
de Bruijn graph:

o U=10,1)

o F={{z,y} € U?| folz) =yor fi(z) =y}

Now, recall the way in which the nodes in consistent hashing partitioned the [0, 1)-interval among
them. We can use a similar strategy here. Suppose that each node v with position x, € [0,1) is
given the interval I, = [z, xsucc(v)) (considering [0, 1) as a ring here). Then we have the property that
Uy, I, = [0, 1) and, due to Lemma 6.3, |I,| € [1/(2n), 1/n] for every node v. Suppose now that nodes
maintain the following condition:

Condition 6.19 Every node v in the system is connected to

e pred(v) and succ(v) (in order to form a circle) and

e all nodes w with I, 0 (fo(1,) U f1(1,) U fo '(v) U fi 1 (v)) # O (in order to be able to emulate
the continuous de Bruijn graph).

Then the nodes in our system can emulate any message transmission along an edge {x,y} € F
since for any such edge there must be two nodes v and w in our system with x € [, and y € [,,, and
these nodes must be connected due to the condition above. When combining Condition 6.19 with our
recursive labeling approach, the following result holds:

11

Theorem 6.20 At any time, the supervised de Bruijn network has a degree of O(1), a diameter of
O(log n) and an expansion of 2(1/log n), where n is the number of peers in the system.

Hence, the emulation the continuous de Bruijn graph yields a well-connected, low-degree graph
for the peers that is, in fact, close to an ideal de Bruijn graph. Consider, for example, the problem of
routing a message from node v to node w, and suppose that v knows x,,. Let x, = (z1, %2, x3,...)
and 2, = (Y1,Y2, Y3, ...) (e, ©, = Y51 2;/2%). Then v may select a random intermediate point
z = (21, 22, 23, ...)2 € [0, 1) (like in Valiant’s trick). v first routes its message along the nodes owning
the points (12223, ...)2, (212122 .. .)2, (222127 ...)2, and so on, until it reaches a node u in which
the two points (2 ...212122...)2 and (zg ... 21412 . . .)2 are either both in I, or one is in I, while
the other is in one of its neighboring intervals (which is true w.h.p. for & = O(logn)). Afterwards,
the message is sent along the node owning the points (zx...z1y1Y2 .. .)2, (2k—1...21¥1Y2)2, and so
on, until it reaches the node w owning the point (y;y2ys . ..)s. Altogether, this just takes O(logn)
communication rounds.

When using the same supervisor strategy as for the supervised cycle (the supervisor introduces a
new node to its to neighbors in [0, 1)), then Condition 6.19 implies that the predecessor of the new
node v has all the connectivity information v needs to get fully integrated into the network. On the
other hand, if an old node u wants to leave the system, and u is replaced by the node with largest label
v, then pred(v) just takes over all of the connections of v and v takes over all connections of u in order
to satisfy Condition 6.19 after the removal of . This gives the following theorem.

Theorem 6.21 Using our framework, the supervisor can maintain a dynamic de Bruijn network with
work and time O(1) for each join and leave request.

6.7 Applications

Finally, we discuss some applications of the supervised overlay networks that arise in the area of
distributed computing.

Grid Computing

Recently, many systems such as SETI@home [7], Folding@home [2], and Distributed.net [1] have
been proposed for distributed computing. A main drawback of such systems is that the topology
of the system is a star graph with the central server maintaining a direct connection to each client.
Such a topology imposes heavy demands on the central server. Instead, we can use our framework
for supervised overlay networks to maintain an overlay network for distributed computing. Peer-to-
peer connections allow subtasks to be spawned without the involvement of the supervisor so that the
demands on the server can be significantly reduced. This is particularly interesting for distributed
branch-and-bound computations as was discussed in [5].

WebTv

Our approach can also be used in Internet applications such as WebTv. In such an application, there are
typically various channels that users can browse or watch while being connected to the Internet. The
number of channels ranges in the scale of hundreds while the number of users can range in the scale
of millions. Such a system should allow users to quickly zap through channels. Hence, such a system

12

should allow for rapid integration and be scalable to a large number of users. Our supervised overlay
networks can easily achieve such a smooth operation. Suppose that every channel has a supervisor,
each supervisor maintains its own broadcast network, and the supervisors form a clique. Then it fol-
lows from our supervised approach, which can handle join and leave operations in constant time, that
users browsing through channels can be moved between the networks in a very fast way, comparable
to server-based networks, so that users only experience an insignificant delay.

Massive multi-player online gaming

Distributed architectures for massive multi-player online gaming (MMOG) have only recently been
studied formally (see e.g., [3]). The basic requirements of such a system includes authentication,
scalability, and rapid integration. Traditionally, such systems have been managed by a central server
that takes care of the overall system with limited communication between the users. Certainly, such a
system will not be scalable and also might experience heavy congestion at the central server. Hence,
distributed architectures are required at a certain scale. A supervised overlay network approach can
help here. For example, in a large virtual world, every supervisor may be responsible for a certain
part of the world, and the supervisors may be interconnected like a cellular network to allow a fast
handover process between them. Each supervisor then takes care of the peers currently exploring its
part of the world. Since in our supervised approach peers can quickly be integrated and removed from
a network, the handover process can be realized in a very fast way so that even fast moving peers
can be handled. Additional supervisors may also be used for load balancing purposes in a sense that
whenever a supervisor is heavily loaded, other supervisors may help out by taking over some of its
peers and/or parts of the virtual world. In this way, it should be possible to create new generations of
games in very complex worlds.

References

[1] Distributed.net. Available at http://www.distributed.net/.
[2] Folding@home. Available at http://folding.stanford.edu/.

[3] C. GauthierDickey, D. Zappala, and V. Lo. A fully distributed architecture for massively multiplayer online
games. In ACM Workshop on Network and System Support for Games, 2004.

[4] K. Kothapalli and C. Scheideler. Supervised peer-to-peer systems. In Proc. of the 2005 International
Symposium on Parallel Architectures, Algorithms, and Networks (ISPAN), 2005.

[5] C. Riley and C. Scheideler. A distributed hash table for computational grids. In /8th Int. Parallel and
Distributed Processing Symposium (IPDPS), 2004.

[6] C. Riley and C. Scheideler. Guaranteed broadcasting using SPON: A supervised peer overlay network. In
3rd International Ziirich Seminar on Communications (1ZS), 2004.

[7] SETI@home. Available at http://setiathome.berkeley.edu/.

13

