
4 Distributed data management I – Hashing
There are two major approaches for the management of data in distributed systems: hashing and
caching. The hashing approach tries to minimize the use of communication hardware by distributing
data randomly among the given processors, which helps to avoid hot spots, and the caching approach
tries to minimize the use of communication hardware by keeping data as close to the requesting pro-
cessors as possible. In this section, we will concentrate on the hashing approach.

4.1 Static hashing
The basic idea behind hashing is to use a compact function (the hash function) in order to map some
space U onto some space V . Hashing can be used very effectively in the context of resource man-
agement, as we will see. Consider the problem of distributing data with addresses in some space
U = {1, . . . , M} evenly among n storage units (also called nodes in the following). In the static case,
we assume that n is fixed and the nodes are numbered from 1 to n. If the whole address space U is
occupied by data items, it is easy to achieve an even distribution of the data among the nodes: node i
gets all data j with (j mod n) + 1 = i. However, if U is sparsely populated, and in addition the data
allocation in U changes over time, it is more difficult to keep the data evenly distributed among the
nodes. In this case, (pseudo-)random hash functions can help.

Suppose that we have a random hash function that assigns every element in U to a node in
{1, . . . , n} chosen uniformly at random, i.e., for every x ∈ U , every node is chosen with probabil-
ity 1/n. Then for any set S ⊆ U , the expected number of elements in S that are assigned to node i is
|S|/n for every i ∈ {1, . . . , n}. In addition to this, the following result can be shown:

Theorem 4.1 For any set S ⊆ U of size m, the maximum number of elements in S placed in a single
node when using a random hash function is at most

m

n
+ O

(√
(m/n) log n +

log n

log log n

)

with high probability.

One can significantly lower the deviation from an optimal distribution of m/n data items per node
by using a simple trick:

Suppose the data items arrive one by one and that instead of using a single random hash function,
we use two independent random hash functions h1 and h2. For each data item x, we check the current
number of data items in the nodes h1(x) and h2(x) and place x in the least loaded of them. (Ties are
broken arbitrarily.) This rule is also called minimum rule. It has the following performance.

Theorem 4.2 ([5]) For any set S ⊆ U of size m, the maximum number of elements in S placed in a
single node when using the minimum rule with two independent, random hash functions is at most

m

n
+ O(log log n) .

Hence, random hashing techniques allow us to distribute any subset in U extremely evenly among
the nodes. If data items can be moved after they have been placed, an even better distribution can be
achieved when using the strategy in Figure 1.

1



pick two random nodes v1 and v2

if there is a data item placed in v1 with alternative location in v2 then
pick any data item x that is placed in v1 with alternative location v2

place x into the least loaded node (among v1 and v2)
if there is a tie (i.e. v1 without x has the same load as v2) then

place x into a randomly chosen of the two nodes

Figure 1: The self-balancing scheme.

Theorem 4.3 ([3]) For any set S ⊆ U of size m it holds that if the self-balancing scheme is run
sufficiently long, then the maximum load of a node will eventually converge to at most dm/ne+1, with
high probability.

Hence, two random hash functions can in principle distribute any subset of U almost perfectly
among the nodes. Hash functions that have near-random qualities in practice are, for example, cryp-
tographic hash functions such as SHA-1. So static hashing (i.e. the number of nodes is fixed) works
fine. But what can we do if the number of nodes changes over the time? In this case we need dynamic
hashing techniques.

4.2 Dynamic hashing
In a distributed system the set of available nodes may change over time. New nodes may join or old
nodes may leave the system. Thus, a hashing strategy is needed that can adjust efficiently to a changing
set of nodes. The naive approach to simply use a new random hash function each time the set of nodes
changes is certainly not an efficient approach, because it would mean to replace virtually all the data.
We will show that much better strategies exist for this, but first we have to specify the parameters we
want to use to measure the quality of dynamic hashing approaches.

Let {1, . . . , N} be the set of all identification numbers a node may have and let {1, . . . , M} be the
set of all possible addresses a data item can occupy. Suppose that the current number of data items in
the system is m ≤ M and that the current number of nodes in the system is n ≤ N . We will often
assume for simplicity that the data and the nodes are numbered in a consecutive way starting with 1
(but any numbering that gives a unique number to each datum and node would work for our strategies).
Let ci be the current capacity of node i. Then (c1, . . . , cn) is the current capacity distribution of the
system. We demand that ci ∈ [0, 1] for every i and that

∑n
i=1 ci = 1. That is, each ci represents the

capacity of node i relative to the whole capacity of the system. (In reality, the capacity ci of a node
i may be based on its storage capacity, its bandwidth, its computational power, or a mixture of theses
parameters.) Our goal is to make sure that every node i with capacity ci has ci ·m of the data.

The system may change now in a way that the set of data items, the set of available nodes, or the
capacities of the nodes change. In this case, a dynamic hashing scheme is needed that fulfills several
criteria:

• Fairness: A scheme is called fair if the expected number of data items it places at node i is
between b(1− ε)ci ·mc and d(1 + ε)ci ·me for all i, where ε > 0 can be made arbitrarily small.

2



• Time Efficiency: A scheme is called time-efficient if it can compute the position of a data item
in a short amount of time.

• Compactness: We call a scheme compact if the amount of information the scheme requires to
compute the position of a data item is small (in particular, it should only depend on N and m in
a logarithmic way).

• Adaptivity: We call a fair scheme adaptive if in the case that there is any change in the set of
data items, nodes, or the capacities of the system, it can redistribute data items to get back to a
fair distribution. To measure the adaptivity of a placement scheme, we use competitive analysis.
For any sequence of operations σ that represent changes in the system, we intend to compare
the number of (re-)placements of data performed by the given scheme with the number of (re-
)placements of data performed by an optimal strategy that ensures that, after every operation,
the data distribution among the nodes is perfectly fair (i.e. node i has exactly cim data items,
up to ±1). A placement strategy will be called c-competitive if for any sequence of changes σ it
requires the (re-)placement of (an expected number of) at most c times the number of data items
an optimal adaptive and perfectly fair strategy would need.

To clarify the last definition, notice that when the capacity distribution in the system changes from
(c1, ..., cn) to (c′1, ..., c

′
n), an optimal, perfectly fair strategy would need

∑

i:ci>c′i

(ci − c′i) ·m

replacements of data items. Thus, for example, if the capacity distribution changes from (1/2, 1/2, 0)
to (0, 1/2, 1/2) (node 1 leaves and node 3 enters the system), ideally only a fraction of 1/2 of the data
would have to be moved.

4.3 Dynamic hashing for uniform systems
In this section we present two strategies that work well for nodes of uniform capacity (i.e., every node
has the same capacity): the consistent hashing strategy and the cut-and-paste strategy. In the uniform
case, the only changes in the system we have to consider are that a data item or node leaves or enters
the system.

The consistent hashing strategy

The consistent hashing strategy was proposed by Karger et al. [4] and works as follows:
Suppose that we have a random hash function f and a set of independent, random hash functions

g1, . . . , gk, where k may depend on n. The function f : {1, . . . , M} → [0, 1) maps the data uniformly
at random to real numbers in the interval [0, 1) and each function gi : {1, . . . , N} → [0, 1) maps the
nodes uniformly at random to real numbers in the interval [0, 1). Item i is assigned to the node j
representing its closest successor in [0, 1), i.e. item i is mapped to the node j with minimum gk(j) so
that f(i) ≤ gk(j), treating [0, 1) here as a ring (see also Figure 2).

Theorem 4.4 ([4]) Consistent hashing

3



01

Figure 2: The consistent hashing strategy.

1. is perfectly fair,

2. only requires a constant expected number of time steps (and O(log n) in the worst case) to
compute the location of a data item when using a suitable algorithm,

3. needs Θ(n log2 N) memory (i.e., k = Θ(log N)) to make sure that the number of data items
stored in a node deviates only by a constant factor from the ideal distribution with high proba-
bility, and

4. is 2-competitive concerning the amount of data that has to be moved if the set of nodes changes.
Note that no movements (apart from insertions of new or deletions of old data) are required if
the set of data changes.

One might think that this strategy can be easily extended to cover the heterogeneous case by al-
lowing nodes with more capacity to have more random points in [0, 1). However, this would require
Ω(min[cmax/cmin,m]) points to be fair, where cmax is the maximum capacity and cmin is the minimum
capacity of a node. Thus, in the worst case the number of points a single node may have to use could
be as much as Θ(m), violating severely our conditions on the space complexity. In fact, restricting
the total number of points to something strictly below m cannot guarantee fairness in general (just
consider two bins with capacities c/m and (m− c)/m for some constant c > 1).

The cut-and-paste strategy

The cut-and-paste strategy consists of two stages and is based on a fixed, random hash function f :
{1, . . . , M} → [0, 1). Since f is a random function, it guarantees that for any subset of [0, 1) of size
s, the fraction of the data that is assigned to a number in this subset is equal to s. Thus, it only has to
be ensured that the interval [0, 1) is evenly distributed among the nodes, i.e. every node gets a part of
[0, 1) of size 1/n (see Figure 3).

For the mapping of the [0, 1) range to the nodes, a so-called cut-and-paste function is used. This
function will make sure that every node has the same share of the [0, 1)-interval. To simplify the
description, given n nodes, we will denote the set of ranges assigned to node i by [0, 1/n)i. In the

4



nf  -  fn

1/n

0

. . . . . . . .
1/(n+1)

1 2 3 4 n n+1

1

n

Figure 3: The cut-and-paste strategy.

case of a step-wise increase in the number of nodes from 1 to N , the cut-and-paste function works as
follows:

At the beginning, we assign the whole range [0, 1) to node 1. The height of a data item x in this
case is defined as f(x). For the change from n to n+1 processors, n ∈ {1, . . . , N − 1}, we cut off the
range [1/(n + 1), 1/n)i from every node i and concatenate these intervals to a range [0, 1/(n + 1))n+1

for the new node n+1. What this actually means for the movement of the data is described in Figure 4.

Replacement from n to n + 1 nodes:
for every node i ∈ {1, . . . , n}:

for all data items x at i with current height h ≥ 1/(n+1):
move x to node n + 1
the new height of x is h− 1

n+1
+ n−i

n(n+1)

Figure 4: The replacement scheme for a new node.

If one node leaves, say node i, then we reverse the replacement scheme in a way that first node n
moves all of its data back to the nodes 1 to n− 1 and then takes over the role of node i (i.e., it obtains
the identification number i and gets all data node i is required to have). This ensures the following
result.

Theorem 4.5 ([1]) The cut-and-paste strategy is perfectly fair and 2-competitive concerning the amount
of data that have to be moved if the node set changes.

Furthermore, the cut-and-paste strategy guarantees the following invariant:

Invariant: In any situation in which we have n nodes, the data items are distributed among them as
this would be if we had a step-wise extension from 1 to n nodes.

In order to compute the actual position of a data item, it therefore suffices to replay the cut-and-
paste scheme for a step-wise increase from 1 to n nodes. Fortunately, we do not have to go through all

5



n steps to compute the current position of a data item, but we only have to consider those steps that
require the data item to be replaced. Using this strategy, we obtain the algorithm given in Figure 5 to
compute the position of a data item.

Input: address c ∈ {1, . . . , M}
Output: node number d ∈ {1, . . . , n}
Algorithm:
set d = 1 and x = f(c)
while x ≥ 1/n do

set y = d1/xe
set x = x− 1/y + (y − 1− d)/(y(y − 1))
set d = y

Figure 5: The computation of the position of a data item.

It is not difficult to show that for any number d of a node in which a data item is currently stored,
the second next node at which it will be stored is at least 2d. Hence, the number of rounds needed for
the computation of the position of a data item is O(log n). Thus, we obtain the following result.

Theorem 4.6 ([1]) The cut-and-paste strategy

• can compute the location of a data item in O(log n) time steps and

• needs O(n log N) memory to store the numbering for the nodes.

4.4 Dynamic hashing for non-uniform systems
Finally, we consider the case that we have an arbitrary capacity distribution. Also here we present two
alternative strategies: SHARE and SIEVE. The results in this section are based on work in [2].

The SHARE strategy

SHARE uses as a subroutine the consistent hashing strategy presented earlier. It is based on two hash
functions (in addition to the hash functions that are used by the consistent hashing strategy): a hash
function h : {1, . . . ,M} → [0, 1) that maps the data items uniformly at random to real numbers in the
interval [0, 1), and a hash function g : {1, . . . , N} → [0, 1) that maps starting points of intervals for
the nodes uniformly at random to real numbers in [0, 1). SHARE works in the following way:

Suppose that the capacities for the n given nodes are represented by (c1, . . . , cn) ∈ [0, 1)n. Every
node i is given an interval Ii of length s · ci, for some fixed stretch factor s, that reaches from g(i) to
(g(i) + s · ci) mod 1, where [0, 1) is viewed as a ring. If s · ci ≥ 1, then this means that the interval is
wrapped ds · cie times around [0, 1). To simplify the presentation, we assume that each such interval
consists of ds · cie intervals Ii′ with different numbers i′ (that are identified with i), where bs · cic of
them are of length 1.

For every x ∈ [0, 1), let Cx = {i : x ∈ Ii} and cx = |Cx|, which is called the contention at point
x. Since the total number of endpoints of all intervals Ii is at most 2(n + s), [0, 1) has to be cut into at

6



most 2(n + s) frames Fj ⊆ [0, 1) so that for each frame Fj , Cx is the same for every x ∈ Fj . This is
important to ensure that the data structures for SHARE have a low space complexity. The computation
of the position of a data item d is now simply done by calling the consistent hashing strategy with item
d and node set Ch(d) (see Figure 6).

Algorithm SHARE(b):
Input: address d of a data item and a data structure

containing all intervals Ii

Output: number of node that stores d

Phase 1: query data structure for point h(d)
to derive the node set Ch(d)

Phase 2: x = CONSISTENT-HASHING(d, Ch(d))
return x

Figure 6: The SHARE algorithm.

For this strategy to work correctly, we require that every point x ∈ [0, 1) be covered by at least one
interval Ii with high probability. This can be ensured if s = Θ(log N). Under the assumption that the
consistent hashing strategy uses k hash functions for the nodes, we arrive at the following result:

Theorem 4.7 ([2]) If s = Ω(log N) and k = Ω(log N), the SHARE strategy

• is fair,

• only requires a constant expected number of time steps (and O(log n) in the worst case) to
compute the location of a data item,

• needs Θ(n log2 N) memory to make sure that the number of data items stored in a node deviates
only by a constant factor from the ideal distribution, with high probability, and

• is 2-competitive concerning the amount of data items that have to be moved if the node set
changes. As in the previous strategies, no movements (apart from insertions of new or deletions
of old data items) are required if the data set changes.

A very important property of SHARE is that it is oblivious, i.e., the distribution of the data items
among the nodes only depends on the current set of nodes and not on the history. This is not true, for
example, for the cut-and-paste strategy. The drawback of SHARE is that the fraction of data items in a
node is not highly concentrated around its capacity (unless s is very large) and that its space complexity
depends on N and not just on n. The next, more complicated scheme will remove these drawbacks,
but at the cost of being non-oblivious.

The SIEVE strategy

The SIEVE strategy is also based on random hash functions that assign to each data item a real number
chosen independently and uniformly at random out of the range [0, 1). Suppose that initially the
number of nodes is equal to n. Let n′ = 2dlog ne+1. We cut [0, 1) into n′ ranges of size 1/n′, and we

7



0 frame

U

h

1

10

Figure 7: Illustration of the SHARE algorithm.

demand that every range be used by at most one node. If range I has been assigned to node i, then i is
allowed to select any interval in I that starts at the lower end of I . The intervals will be used in a way
(described in more detail below) that any data item mapped to a point in that interval will be assigned
to the node owning it. We say that a range is completely occupied by a node if its interval covers the
whole range. A node can own several ranges, but it is only allowed to own at most one range that is
not completely occupied by it. Furthermore, we demand from every node i that the total amount of the
[0, 1) interval covered by its intervals is equal to ci/2 (it will actually slightly deviate from that, but for
now we assume it is ci/2). These demands ensure the following property.

Lemma 4.8 For any capacity distribution, it is possible to assign ranges to the nodes in a one-to-one
fashion so that each node can select intervals in [0, 1) of total size equal to ci/2.

Proof. Since every node is allowed to have only one partly occupied range, at most n of the n′ ranges
will be partly occupied. The remaining ≥ n ranges cover a range of at least 1/2, which is sufficient to
accommodate all ranges that are completely occupied by the nodes. ut

So suppose we have an assignment of nodes to intervals in their ranges such that the lemma is
fulfilled. Then we propose the strategy described in Figure 8 to distribute the data items among the
nodes (the fall-back node will be specified later). It is based on L random hash functions h1, . . . , hL :
{1, . . . , M} → [0, 1), where initially L = log n′ + f . The parameter f will be specified later. Figure 8
implies the following result:

Theorem 4.9 SIEVE can be implemented so that the position of a data item can be determined in
expected time O(1) using a space of O(n log n).

Proof. Since the nodes occupy exactly half of the interval [0, 1), the probability that a data item
succeeds to be placed in a round is 1/2. Hence, the expected time to compute the position of a data
item is O(1). ut

Let a data item that has not been assigned to a node in the for-loop of the algorithm above be called
a failed data item. Obviously, the expected fraction of data items that fail is equal to 1/2L. Thus,

8



Algorithm SIEVE(d):
Input: number d of a data item
Output: node number that stores d

for i = 1 to L do
set x = hi(d)
if x is in some interval of node s then return s

return number of fall-back node

Figure 8: The SIEVE algorithm.

0 1

0 1

0 1

0 1

h1

U

. . . .

h

h

h

2

3

L

Figure 9: Illustration of the SIEVE algorithm.

the expected share of the data items any node i (apart from the fall-back node) will get is equal to
ci(1− 1/2L). However, we want to ensure that every node gets an expected share of ci. To ensure this,
we first specify how to select the fall-back node.

Initially, the node with the largest share is the fall-back node. If it happens at some time step that
the share of the largest node exceeds the share of the fall-back node by a factor of 2, then the role is
passed on to that node.

Next we ensure that every node i gets an expected share of ci. Let every non-fall-back node
choose an adjusted share of c′i = ci/(1 − 1/2L), and the fall-back node chooses an adjusted share of
c′i = (ci − 1/2L)/(1 − 1/2L). First of all, the adjusted shares still represent a valid share distribution
because

∑

i

c′i =
1− ci

1− 1/2L
+

ci − 1/2L

1− 1/2L
= 1 .

9



When using these adjusted shares for the selection of the intervals, now every non-fall-back node i
gets a true share of (ci/(1 − 1/2L)) · (1 − 1/2L) = ci and the fall-back node gets a true share of
((ci − 1/2L)/(1 − 1/2L)) · (1 − 1/2L) + 1/2L = ci. Hence, the adjusted shares will ensure that
the expected share of every node is precisely equal to its capacity. Thus, we arrive at the following
conclusion.

Theorem 4.10 SIEVE is perfectly fair.

In addition, it can be shown (similar to the static hashing case) that node i gets at most cim +
O(
√

cim log m) data items with high probability.
In order to show that SIEVE also has a very good adaptivity, we have to consider the following

cases:

1. the capacities change
2. the number n′ of ranges has to increase to accommodate new nodes
3. the role of the fall-back node has to change
4. the number L of levels has to increase to ensure that 1/2L is below the share of the fall-back

node

As for the SHARE strategy, changes in the number of data items do not require SIEVE to replace data
items in order to remain fair, since SIEVE is based on random hashing.

We begin with considering the situation that the capacities of the system change from (c1, c2, . . .)
to (d1, d2, . . .). Then we use the following strategy: every node i with di < ci reduces its intervals in
a way that afterwards it again partly occupies at most one range, and then every node i with di > ci

extends its share so that it also partly occupies afterwards at most one range.
It is easy to check that there will always be ranges available for those nodes that increase their

share so that every range is used by at most one node. It remains to bound the expected fraction of the
data items that have to be replaced.

Lemma 4.11 For any change from one capacity distribution to another that does not involve the
change of the fall-back node, SIEVE has a competitive ratio of 2.

Proof. For each non-fall-back node i, the expected fraction of the data items that needs to be replaced
when changing from ci to di is

(
1− 1

2L

)
|c′i − d′i| =

(
1− 1

2L

) |ci − di|
1− 1/2L

= |ci − di|

and for the fall-back node i,
(
1− 1

2L

)
|c′i − d′i| ≤ |ci − di|. Hence, the expected fraction of the data

items that needs to be replaced is at most
∑

i |ci − di| which is at most twice the minimum number of
data movements to get back to a fair placement. ut

Next we consider the situation that the number n′ of ranges has to increase. This happens if a new
node is introduced which requires n′ = 2dlog ne+1 to grow. In this case, we simply subdivide each old
range into two new ranges. Since afterwards the property is still kept that every node partly occupies
at most one range, nothing has to be replaced.

10



Consider now the situation that the role of the fall-back node has to change. Recall that this happens
if the node with the maximum share has at least twice the share of the fall-back node. Let i1 be the old
and i2 be the new fall-back node. When i1 became the fall-back node, we had cold

i1
≥ cold

i2
, and when

i2 becomes the fall-back node, it holds that cnew
i1

≤ (1/2)cnew
i2

. Since cnew
i2

≥ 1/n (it is the node with
maximum capacity), there must have been a capacity change of at least (1/2)cnew

i2
≥ 1/(2n) in the

system. When i1 passes on the role of the fall-back node to i2, then
∣∣∣∣∣
c1 − 1/2L

1− 1/2L
− c1

1− 1/2L

∣∣∣∣∣ +

∣∣∣∣∣
c2

1− 1/2L
− c2 − 1/2L

1− 1/2L

∣∣∣∣∣ +
1

2L

of the data items have to be moved, which is at most 3
2L−1

. If the f in the formula L = log n′ + f

is sufficiently large, then 3
2L−1

¿ 1
2n

, and therefore the amount of work for the replacement can be
“hidden” in the replacements necessary to react to changes in the capacity distribution of the system.

Next consider the situation that the number of levels L has to grow. Once in a while this is nec-
essary, since for the case that many new nodes are introduced the fall-back node may not be able or
willing to store a fraction of 1/2L of the data items. We ensure that this will never happen with the
following strategy:

Whenever the share of the fall-back node is less than 1/2L−t for some integer t, we increase the
number of levels from L to L + 1.

This strategy will cause data items to be replaced. We will show, however, that also here the
fraction of data items that have to be replaced can be “hidden” in the amount of data items that had to
be replaced due to changes in the capacity distribution.

Let i1 be the fall-back node that required an increase from L − 1 to L (resp. the initial fall-back
node if no such node exists), and let i2 be the current fall-back node that requires now an increase
from L to L + 1. Then we know that the size of i1 must have been at least 1/2(L−1)−t when it became
a fall-back node, and when i2 must have dropped below 1/2L−t so that there is a change from L to
L + 1. Due to the way the role of a fall-back node is passed on, this implies that there must have been
a capacity change of at least 1/2(L−1)−t − 1/2L−t = 1/2L−t. Changing from L to L + 1 involves the
movement of an expected fraction of at most


∑

j 6=i2

∣∣∣∣∣
cj

1− 1/2L
− cj

1− 1/2L+1

∣∣∣∣∣




+

∣∣∣∣∣
ci2 − 1/2L

1− 1/2L
− ci2 − 1/2L+1

1− 1/2L+1

∣∣∣∣∣

of the data items, which is at most 2
2L−3

. If t and f ≥ t are sufficiently large, then 2
2L−3

¿ 1/2L−t,
and therefore also here the amount of work for the replacement can be “hidden” in the replacements
necessary to accommodate changes in the distribution of shares.

Hence, we arrive at the following result.

Theorem 4.12 SIEVE is (2 + ε)-competitive, where ε > 0 can be made arbitrarily small.

11



References
[1] A. Brinkmann, K. Salzwedel, and C. Scheideler. Efficient, distributed data placement strategies for storage

area networks. In Proc. of the 12th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages
119–128, 2000.

[2] A. Brinkmann, K. Salzwedel, and C. Scheideler. Compact, adaptive placement schemes for non-uniform
capacities. In Proc. of the 14th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 53–62,
2002.

[3] A. Czumaj, C. Riley, and C. Scheideler. Perfectly balanced allocation. In 7th Intl. Workshop on Random-
ization and Approximation Techniques in Computer Science (RANDOM), pages 240–251, 2004.

[4] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consistent hashing and random
trees: Distributed caching protocols for relieving hot spots on the World Wide Web. In Proc. of the 29th
ACM Symp. on Theory of Computing (STOC), pages 654–663, 1997.

[5] A. S. P. Berenbrink, A. Czumaj and B. Vöcking. Balanced allocations: The heavily loaded case. In Proc. of
the 32nd ACM Symp. on Theory of Computing (STOC), pages 745–754, 2000.

12


