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Fundamental Algorithms

Problem 1 (10 Points)

Suppose we have a binary search tree with keys in the range from 1 to 1000. We search
for key 363. Which of the following cannot represent the sequence of keys of nodes visited
during this search?

a 2,252,401, 398, 330, 344, 397, 363

b 924,220,911, 244, 898, 258, 362, 363

¢ 925,202, 911,240,912, 245, 363

d 2,399, 387,219, 266, 382, 381, 278, 363
e 935,278, 347,621, 299, 392, 358, 363

Solution

The wrong ones are (c) and (e)

Reason: While searching in a binary search tree, once we reach a node and decide to
continue the search in the left subtree (we are looking for a smaller element than the
node), then in the following search, no element which is larger than the node will occur.
Similarly, once we have taken a right subtree at a node, a value smaller than that node
will never occur in the sequence.

In the case (c), we had already reached 911 once and decided to go for the smaller ele-
ments. Then by no means, 912 can occur in the search.

In the case (e), we once take a right subtree at 347. But later in the sequence, we come
across 299 which is less than 347. This cannot occur in a binary search tree.

Problem 2

After insert (x) or delete(x) operations on an AVL tree, the tree needs to be rebalanced
using single/double rotations. Show that all the rotations of an AVL tree are made out of
two simple operations.



Abbildung 1: Rotations in an AVL tree



Solution

The different types of rotations are given in the picture. From observation it is possible to
see that RR rotation is the symmetric image of LL. Similarly, RL and LR are also mirror
images. The figure also shows how the double rotations can be done by two successive
single rotations.

Problem 3

Given is an AVL tree. Perform the operation insert(11) on it. Balance the tree.
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Solution

The operation insert(11) is shown in the figure - step by step.
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Problem 4
Prove that an AVL-tree containing n nodes is of height ©(Ign).

Solution

What could be the minimum height of an AVL-tree with n nodes? The tree will be of
minimum height when the tree is balanced'.

In that case we know that the height of the tree is of O(Ign).

So when would be the height maximum for a given number of nodes? This will happen
when the tree is more sparse, but satisfy the AVL properties. To find out a relation
between the height and the number of nodes let’s do the following.

A tree of height h satisfying the above condition can be made by joining a h — 1 tree and
a h — 2 tree by a single node at the root. So the number of nodes for such a tree of height
h is

My = Mmp_1+mp_o+ 1

From observation it could be seen that m; = Fj.s — 1 where F, represents the n'*
Fibonacci number.

Using the result of the Problem 2 in Tutorial 1, we can see that
22 <my, < Qh

which implies h < 21gm;, and h > lgmy,. Hence h is ©(lgmy,), where my, is the number
of nodes. Hence h € O(Ign).

e A ROOTED binary tree is a rooted tree in which every node has at most two children.
e A FULL binary tree, or PROPER binary tree, is a tree in which every node has zero or two children.

e A PERFECT binary tree (sometimes COMPLETE binary tree) is a full binary tree in which all leaves
are at the same depth.

e A COMPLETE binary tree is a tree with n levels, where for each level d > n — 1, the number of
existing nodes at level d is equal to 2d. This means all possible nodes exist at these levels. An
additional requirement for a complete binary tree is that for the n** level, while every node does
not have to exist, the nodes that do exist must fill from left to right. (This is ambiguous with
perfect binary tree.)

e A BALANCED binary tree is where the depth of all the leaves differs by at most 1.

e An ALMOST COMPLETE binary tree is a tree in which each node that has a right child also has a
left child. Having a left child does not require a node to have a right child. Stated alternately, an
almost complete binary tree is a tree where for a right child, there is always a left child, but for a
left child there may not be a right child.

e A DEGENERATE tree is a tree where for each parent node, there is only one associated child
node. This means that in a performance measurement, the tree will behave like a linked list data
structure.

The number of nodes n in a perfect binary tree can be found using this formula: n = 2h+1 — 1
where h is the height of the tree.

The number of leaf nodes n in a perfect binary tree can be found using this formula: n = 2" where
h is the height of the tree.
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And Finally after inserting till 12, along with RR rotations when
necessary, we get,.
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Abbildung 2: Changes happening in inserting 2, ..., 12 on the given AVL tree

Problem 5

On an AVL tree with a single node 1, insert the numbers 2,3,...,12 one by one. Show
the balancing.

Solution

The step by step operations are shown in the figure.



