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Fundamental Algorithms

Problem 1 (10 Points)
What is an undirected tree? Give three definitions of tree and show they are equivalent.

Solution
Three definitions:

1. A tree is an undirected graph that is connected and acyclic.

2. Any connected, undirected graph with n nodes and n− 1 edges is a tree.

3. An undirected graph with a unique path between any pair of nodes is a tree.

1=2 Since the graph is connected, there must be atleast one way to go from one node
to another which means there must be atleast n− 1 edges. And if there is a cycle in the
graph, that means there is more than one way from one node to another which would say
there are more than n − 1 edges. so acyclic connected graph is a connected graph with
n− 1 edges. The other way around is also similar.
1=3 If there is a unique path between any pair of nodes, that means there are no cycles.
And the graph is connected.
All the three definitions are equivalent.

Problem 2 (10 Points)
A Binary Tree is a rooted tree in which every node has at most two children. The root
node is said to be in level one. The children of the noded at level n are in level n + 1.

Calculate

1. The maximum number of nodes in level h of a binary tree

2. The maximum number of nodes in a binary tree of h levels.

3. How many nodes does a complete1 binary tree with n leaves have?

1A binary tree is complete if all of its vertices have either zero or two children and all the leaves are

at levels l and l − 1



Solution

1. The maximum number of nodes in level h of a binary tree

A level will have maximum number of nodes iff the level above it has maximum
nodes and all the nodes have maximum (2) children. So the maximum nodes which
can occur in level h is 2 times the maximum of level h− 1.

The maximum of level 1 is 1 which is 20

The maximum of level 2 is 2 which is 21

The maximum of level 3 is 4 which is 22

Hence, the maximum of level h will be 2h−1.

2. The maximum number of nodes in a binary tree of h levels.

A tree of h levels will have maximum nodes iff all the h levels have maximum nodes
in each of them. So the total number of nodes will be 1 + 2 + . . . + 2h−1 which is
equal to 2h − 1.

3. How many nodes does a complete binary tree with n leaves have?

If the tree has maximum number of nodes, it’s last level has to have maximum
number of leaves. If we assume that the last level is h, then from the first part, we
know that the maximum number of leaves at level h is 2h−1. So in this case 2h−1

equals n.

And from the part two, we know that the maximum number of nodes in a tree of
levels h is 2h − 1.

We can see that 2h − 1 = 2(2h−1)− 1 = 2 · n− 1. So the solution is 2 · n− 1.

A different and more mathematical approach is given below. If the complete binary
tree is of height h, the number of leaves will be between 2h−2 and 2h−1. Hence the
height could be calculated to be ⌈lg n⌉ + 1. The maximum number of nodes a tree
of height h is 2h − 1.

So in this case, it is 2⌈lg n⌉+1 − 1 = 2⌈lg n⌉ · 2− 1

Problem 3 (10 Points)
Perform the heapify() operation on an array containing the keys {0, .., 9} where we
assume that the keys are stored in the tree in the following order (level-wise, left-to-right):
6; 3, 4; 1, 8, 5, 0; 7, 9, 2 ((levels separated by semicolon))

Solution
The heapify algorithm is given below at ??.

Algorithm heapify(Array A, size)
(∗ The algorithm for creating the heap ∗)
1. for i←

⌊

size

2

⌋

downto 1
2. siftdown(A, i, size);
3. return

2



The algorithm for siftdown is given at ??.

Algorithm siftdown(Array A, root, size)
(∗ The algorithm for sifting down ∗)
1. child← 2× root + 1
2.
(∗ See whether there is a child ∗)
3. if child > size

4. return
5.
(∗ See whether there is a right child and if yes then see whether it is smaller ∗)
6. if child < size and A[child + 1] < A[child]
7. child← child + 1
8.
(∗ If the parent is larger, then do the swap and continue to reheap ∗)
9. if A[root] > A[child]
10. swap(A, root, child)
11. siftdown(A, child, size);
12. return

The output of the algorithm can be seen in the figure. The blue nodes are the node which
is being re-heaped. The red nodes are the children which needs to be swapped with his
dad!
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Problem 4 (10 Points)
Analyze the complexity of the heapify() function, applied to a complete binary tree
containing n nodes. The result should be given as exactly as possible in Landau notation.

Solution
At each step of the siftdown algorithm, a node is compared to its children and one of
them is chosen as the next root. So, after every siftdown call, we go to the next level
which means, one level of the tree is dropped at each step of this process. Heap is a binary
tree with a maximum of lg n levels. Thus, the worst case time complexity of siftdown is
O(lg n).
Each call to siftdown takes O(lg n) time and there are O(n) such calls. Thus the running
time is O(n lg n).
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