Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dmytro Chibisov Sandeep Sadanandan

Fundamental Algorithms

Problem 1 (10 Points)

Consider the following reccurance relation:

$$g_1 = 1$$

 $g_2 = 2$
 $g_n = g_{n-1} \cdot g_{n-2} ; n \ge 3$

What is g_n as a function of fibonacci number? Prove your claim. Solution

$$g_{n} = g_{n-1} \cdot g_{n-2}$$

$$= (g_{n-2} \cdot g_{n-3}) \cdot g_{n-2}$$

$$= g_{n-2}^{2} \cdot g_{n-3}$$

$$= g_{n-3}^{3} \cdot g_{n-4}^{2}$$

$$\vdots$$

$$= g_{n-i}^{F_{i+1}} \cdot g_{n-(i+1)}^{F_{i}}$$

$$= g_{n-(n-2)}^{F_{(n-2)+1}} \cdot g_{n-(n-1)}^{F_{n-2}}$$

$$= g_{2}^{F_{n-1}}$$

$$= 2^{F_{n-1}}$$

This could be proved using induction too.

Problem 2 (10 Points)

Consider the following:

$$g_1 = 1$$

$$g_2 = 1$$

$$g_n = (n-1) \cdot g_{n-1} + (n-2) \cdot g_{n-2} + \ldots + 1 \cdot g_1 ; n \ge 3$$

What is g_n as a function of n? Prove your claim.

(Extra: Prove: If $g_2 = 2$, then $g_n = \frac{n! \cdot 5}{3!}$)

Solution

$$g_n = (n-1) \cdot g_{n-1} + (n-2) \cdot g_{n-2} + \ldots + 1 \cdot g_1$$

$$g_{n-1} = (n-2) \cdot g_{n-2} + \ldots + 1 \cdot g_1$$

$$g_n - g_{n-1} = (n-1)g_{n-1}$$

$$g_n = n \cdot g_{n-1}$$

Consider expanding the series.

$$g_n = n \cdot g_{n-1}$$

= $n \cdot (n-1) \cdot g_{n-2}$
= $n \cdot (n-1) \dots 3 \cdot g(2)$
= $\frac{n!}{2}$

If g(2) = 2 then g(3) = 5. That means:

$$g_n = n \cdot g_{n-1}$$

$$= n \cdot (n-1) \cdot g_{n-2}$$

$$= n \cdot (n-1) \dots 4 \cdot g(3)$$

$$= n \cdot (n-1) \dots 4 \cdot 5$$

$$= \frac{n!}{3!} \cdot 5$$

Problem 3 (10 Points)

Give, in Landau notation, the relationships between every pair of the following functions. $n, \lg n, n^2, n \lg n$ and 2^n .

Solution

Let's tabulate them together.

	n	$\lg n$	n^2	$n \lg n$	2^n
n	Θ	ω	0	0	0
$\lg n$	0	Θ	0	0	0
n^2	ω	ω	Θ	ω	0
$n \lg n$	ω	ω	0	Θ	0
2^n	ω	ω	ω	ω	Θ

The following picture shows the growth rate of each functions Blue = n, Green $= n^2$, $\text{Black} = \ln n$, $\text{Red} = n \ln n$ and $\text{Yellow} = 2^n$. In the figure, n^2 seems to grow faster than 2^n . In reality 2^n over grows n^2 for n > 4.

