Fundamental Algorithms

Problem 1 (10 Points)

Calculate the cost of calculating n^{th} Fibonacci number, using the recursive algorithm F(n) = F(n-1) + F(n-2)

Solution

First let's try to solve it using trial and error method. Let's examine the first few numbers of the series.

n	1	2	3	4	5	6	7	8
F(n)	1	1	2	3	5	8	13	21
T(n) = T(F(n))	0	0	3	6	12	21	36	60

From a careful analysis, we can see that T(n) = 3F(n) - 3. Let's propose this to be the value of T(n) and see whether we can prove this. We use induction to prove this.

Case n = 1 We can see that T(0) = 3F(0) - 3 = 0

Case n = 2 We can see that T(1) = 3F(1) - 3 = 0

Case n > 2 Assume that T(n) = 3F(n) - 3 is true for all m < n.

$$T(n) = T(n-1) + T(n-2) + 3$$

= $3F(n-1) - 3 + 3F(n-2) - 3 + 3$
= $3(F(n-1) + F(n-2)) + (3 - 3 - 3)$
= $3F(n) - 3$

Hence proved. So, the cost of calculation of n^{th} Fibonacci number is 3F(n) - 3.

Problem 2 (10 Points)

Show: $\left\lfloor 2^{\frac{n-1}{2}} \right\rfloor \le F(n) \le \left\lfloor 2^{\frac{n+1}{2}} \right\rfloor$

Solution

As in the above exercise, we can use induction to prove this.

Case
$$n = 1$$
: $\lfloor 2^0 \rfloor \le 1 \le \lfloor 2^1 \rfloor$
Case $n = 2$: $\lfloor 2^0 \rfloor \le 1 \le \lfloor 2^{\frac{3}{2}} \rfloor$
Case $n > 2$: Assume that $\lfloor 2^{\frac{n-1}{2}} \rfloor \le F(n) \le \lfloor 2^{\frac{n+1}{2}} \rfloor$ is true for all $m < n$.
1. $\lfloor 2^{\frac{n-1}{2}} \rfloor \le F(n)$

$$F(n) = F(n-1) + F(n-2)$$

$$\ge \lfloor 2^{\frac{n-1-1}{2}} \rfloor + \lfloor 2^{\frac{n-2-1}{2}} \rfloor$$

$$= \lfloor 2^{\frac{n-2}{2}} \rfloor + \lfloor 2^{\frac{n-3}{2}} \rfloor$$

$$\ge \lfloor 2^{\frac{n-3}{2}} \rfloor (\lfloor 2^1 \rfloor + 1)$$

$$= \lfloor 2^{\frac{n-3}{2}} \rfloor (1+1)$$

2. $F(n) \leq \left\lfloor 2^{\frac{n+1}{2}} \right\rfloor$ (Very similar to the above)

$$F(n) = F(n-1) + F(n-2)$$

$$\leq \left\lfloor 2^{\frac{n-1+1}{2}} \right\rfloor + \left\lfloor 2^{\frac{n-2+1}{2}} \right\rfloor$$

$$= \left\lfloor 2^{\frac{n}{2}} \right\rfloor + \left\lfloor 2^{\frac{n-1}{2}} \right\rfloor$$

$$\leq \left\lfloor 2^{\frac{n}{2}} \right\rfloor (1 + \left\lfloor 2^{-\frac{1}{2}} \right\rfloor)$$

$$= \left\lfloor 2^{\frac{n}{2}} \right\rfloor (1 + 0)$$

$$= \left\lfloor 2^{\frac{n}{2}} \right\rfloor (\left\lfloor 2^{\frac{1}{2}} \right\rfloor)$$

$$\leq \left\lfloor 2^{\frac{n+1}{2}} \right\rfloor$$

Problem 3 (10 Points)

Let SUPERCOMPUTER be a very fast computer which can perform 10^9 operations per second, for some problems of size n the table below lists the number of operations necessary. More specifically, the i^{th} algorithm needs $t_i(n)$ operations.

$$t_1(n) = 2 \cdot n$$

$$t_2(n) = n \lg(n)$$

$$t_3(n) = 2.5n^2$$

$$t_4(n) = \frac{1}{1000} \cdot n^3$$

$$t_5(n) = 3^n$$

Determine, for which maximal input sizes each algorithm needs at most 1 second, 1 minute, 1 hour. How do these values change, if the computer is upgraded to be 10 times faster (i.e., can do 10^{10} operations)?

Solution

If N is the number of operations which the computer can do in time t (which is actually $10^9 \cdot t$ here), we need to find the value of n for each of the algorithms which will need $t_i(n) \leq N$.

If we take the first case, the algorithm needs $2 \cdot n$ operations for an input size of n.

So we need a value n such that, $2 \cdot n \le 10^9 \cdot t$. Which will be $5 \cdot 10^8 \cdot t$. Now, let's calculate this for all the algorithms

$$2 \cdot n \le 10^9 \cdot t \implies n \le 5 \cdot 10^8 \cdot t$$

$$n \lg(n) \le 10^9 \cdot t \implies n \le 3.522134445 \cdot 10^7$$

$$2.5 \cdot n^2 \le 10^9 \cdot t \implies n \le \sqrt{4 \cdot 10^8 \cdot t}$$

$$\implies n \le 2 \cdot 10^4 \cdot \sqrt{t}$$

$$\frac{1}{1000} \cdot n^3 \le 10^9 \cdot t \implies n \le (10^{12} \cdot t)^{\frac{1}{3}} = 10^4 \cdot t^{\frac{1}{3}}$$

$$3^n \le 10^9 \cdot t \implies n \le \log_3(10^9 \cdot t) = 9 \log_3(10) + \log_3(t) \approx 18.8 + \log_3(t)$$

Given these relations, if we know the value of t, finding out the maximum size of input is just a matter of solving the equations. In case of t_2 one has to calculate the values separately for different values of t, where as for the other algorithms, we can simply use it as a formula.

	1s	$1\mathrm{m} = 60\mathrm{s}$	1h = 3600s
$t_1(n)$	$5 \cdot 10^{8}$	$3 \cdot 10^{10}$	$1.8 \cdot 10^{12}$
$t_2(n)$	$\approx 3.96 \cdot 10^7$	$\approx 1.94 \cdot 10^9$	$\approx 9.86 \cdot 10^{10}$
$t_3(n)$	20000	$pprox 1.55 \cdot 10^5$	$1.2\cdot 10^6$
$t_4(n)$	10000	≈ 39149	$\approx 1.53 \cdot 10^5$
$t_4(n)$	≈ 18	≈ 22	≈ 26

Now if we increase the processing power by a factor of 10, it is very evident that the input size can be multiplied by 10 in the case of t_1 .

Let's see what happens with t_5 . The following was valid when the processing power was 10^9 .

$$3^{n} \le 10^{9} \cdot t \Rightarrow n \le \log_{3}(10^{9} \cdot t) = 9\log_{3}(10) + \log_{3}(t) \approx 18.8 + \log_{3}(t)$$

When the power is 10^{10} , the relation will change to:

$$3^{n} \le 10^{10} \cdot t \Rightarrow n \le \log_{3}(10^{10} \cdot t) = 10 \log_{3}(10) + \log_{3}(t) \approx \log_{3}(10) + 18.8 + \log_{3}(t)$$

It is clear that the size of n can be increased by a value of $\log_3(10)$.¹ Now if we continue to analyse the same with other algorithms, we get the following.

t_1	t_2	t_3	t_4	t_5	
·10	$\approx \cdot 10$	$\cdot\sqrt{10}$	$\cdot 10^{\frac{1}{3}}$	$+\log_3 10$	

Problem 4 (20 Points)

Design iterative and recursive algorithms to compute 2^n . Show that there exists a recursive algorithm which performs better than the iterative naive algorithm.

Solution

Let's try to make two algorithms of which one is iterative and other is recursive.

Iterative algorithm

We multiply 2 n times

Algorithm *PowerOfTwoIterative*(n)

- (* The iterative algorithm for 2^n *)
- 1. $returnval \leftarrow 1$
- 2. **if** n = 0
- 3. then return *returnval*
- 4. while n > 0
- 5. returnval = returnval * 2
- 6. n = n 1
- 7. return returnval

It is easily seen that the number of operations needed for this algorithm is n-1.

¹Note: NOT by a factor

Recursive Algorithm

The main idea of recursive algorithm is from the fact that $2^n = 2^{\frac{n}{2}} * 2^{\frac{n}{2}}$

Algorithm *PowerOfTwoRecursive*(n) (* The recursive algorithm for 2^n *) 1. **if** n = 12.then return 2 3. if n is EVENthen 4. $PartialResult = PowerOfTwoRecursive(\frac{n}{2})$ 5.return PartialResult * PartialResult 6. 7. else 8. return 2 * PowerOfTwoRecursive(n-1)

Analysis

We can assume that n is greater than one. Let's consider the values of n in a sequence of recursive calls which would happen once PowerOfTwoRecursive(n) is called. It could be:

1. All the values are EVEN

In the case of sequence of all n being EVEN, we will be dividing n by 2 in all the calls. The maximum number of this calls can be $\lg n$.

In every call, we have 2 operations. Hence the number of operations will be $2 \cdot \lg n$.

2. A sequence with alternate ODD and EVEN values of n. In this case, the maximum number of recursive calls will be $2 * \lg n$ since the operations n = n - 1 and division by 2 will come alternatively.

In every call, we have 2 operations. So the number of operations is $2 * 2 \cdot \lg n = 4 \lg n$.

3. We cannot have a sequence with two consecutive ODD values. Any other sequence will have number of recursive calls varying between $\lg n$ and $2 \cdot \lg n$. So the number of operations will be definitely less than the second case.

The maximum number of operations needed with the recursive algorithm is $4 * \lg n$. As seen in the graph, for any n > 16, the recursive algorithm has a better performance than

the iterative one.

