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Fundamental Algorithms

Problem 1 (10 Points)

Calculate the cost of calculating n'* Fibonacci number, using the recursive algorithm
Fn)=Fn—-1)+F(n—2)

Solution

First let’s try to solve it using trial and error method. Let’s examine the first few numbers
of the series.
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From a careful analysis, we can see that T'(n) = 3F(n) — 3. Let’s propose this to be the
value of T'(n) and see whether we can prove this. We use induction to prove this.

Case n =1 We can see that T(0) = 3F(0) —3=0

Case n =2 We can see that T'(1) =3F(1) —3 =10

Case n > 2 Assume that T'(n) = 3F(n) — 3 is true for all m < n.

Tn) = Tn—1)+T(n—2)+3
= 3F(n—1)—34+3F(n—2)—3+3
— 3(F(n—1)+F(n—2)+(3-3-3)
= 3F(n)—3

Hence proved. So, the cost of calculation of n'* Fibonacci number is 3F(n) — 3.

Problem 2 (10 Points)

Show: PnTilJ < F(n) < PnTHJ



Solution

As in the above exercise, we can use induction to prove this.

Case n = 1: [2°] <1< |2!]
Case n=2: [2°| <1< P%J

—1 n+1

Case n > 2: Assume that {2717J < F(n) < P 2 J is true for all m < n.

1. {Q%J < F(n)

vV
r
[\
il
L
+ | I
+
—
[\
3
vl
L
| I

|
ro

v
\\}
4
—~
—
\}
=
|
_|._
—_
~—

2. F(n) < {2 = J (Very similar to the above)

F(n) = F(n—1)+F(n—2)
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Problem 3 (10 Points)

Let SUPERCOMPUTER be a very fast computer which can perform 10° operations per se-
cond, for some problems of size n the table below lists the number of operations necessary.



More specifically, the it algorithm needs t;(n) operations.

ti(n) = 2-n
ta(n) = nlg(n)
ts(n) = 2.5n

t _ 3
() = 1550 "
t5(n) = 3"

Determine, for which maximal input sizes each algorithm needs at most 1 second, 1 minute,
1 hour. How do these values change, if the computer is upgraded to be 10 times faster
(i.e., can do 10'Y operations)?

Solution

If N is the number of operations which the computer can do in time ¢ (which is actually
10° - ¢ here), we need to find the value of n for each of the algorithms which will need

If we take the first case, the algorithm needs 2 - n operations for an input size of n.

So we need a value n such that, 2-n < 10° - t. Which will be 5-10%-¢. Now, let’s calculate
this for all the algorithms

2.n<10-t = n<5-10%-t
nlg(n) <10°-t = n < 3.522134445- 107

25-n2<10° ¢t = n<V4-108-¢

= n<2-10* VvVt

%.n?»gm?’.t = n<(102-4)s =10 ¢35

3" <10%-t = n <logy(10°-t) = 9logs(10) + logs(t) ~ 18.8 + logs(t)

Given these relations, if we know the value of ¢, finding out the maximum size of input
is just a matter of solving the equations. In case of t; one has to calculate the values
separately for different values of ¢, where as for the other algorithms, we can simply use
it as a formula.

| | s | 1m = 60s | 1h = 3600s |
t1(n) 5-10° 310 1.8-10™
ta(n) ~ 3.96 - 107 ~ 1.94-10° ~ 9.86 - 10™°
t3(n) 20000 ~ 1.55 - 10° 1.2-10°
ta(n) 10000 ~ 39149 ~ 1.53 - 10°
ty(n) ~ 18 ~ 22 ~ 26




Now if we increase the processing power by a factor of 10, it is very evident that the input
size can be multiplied by 10 in the case of ¢;.

Let’s see what happens with 5. The following was valid when the processing power was
10°.
3" <107 -t = n < logs(10° - ) = 9log,(10) + log,(t) ~ 18.8 + log,()

When the power is 10%°, the relation will change to:

3" < 10" -t = n <logy(10™ - ) = 101ogs(10) + logs () ~ logs(10) + 18.8 + logs (t)

It is clear that the size of n can be increased by a value of log;(10). ! Now if we continue
to analyse the same with other algorithms, we get the following.
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Problem 4 (20 Points)

Design iterative and recursive algorithms to compute 2". Show that there exists a recursive
algorithm which performs better than the iterative naive algorithm.

Solution

Let’s try to make two algorithms of which one is iterative and other is recursive.

Iterative algorithm

We multiply 2 n times

Algorithm PowerOfTwolterative(n)
(* The iterative algorithm for 2" %)
1. returnval «— 1

2. ifn=0

3 then return returnval

4. whilen >0

5! returnval = returnval x 2
6 n=n-—1

7. return returnval

It is easily seen that the number of operations needed for this algorithm is n — 1.

!Note: NOT by a factor



Recursive Algorithm

The main idea of recursive algorithm is from the fact that 2" = 2% % 22

Algorithm PowerOfTwoRecursive(n)
* The recursive algorithm for 2™ x)

—~

1. ifn=1

2. then return 2

3. ifnis EVEN

4. then

5. Partial Result = PowerO fTwoRecursive(s)
6. return Partial Result x Partial Result

7. else

8. return 2 x PowerO fTwoRecursive(n — 1)
Analysis

We can assume that n is greater than one. Let’s consider the values of n in a sequence

of recursive calls which would happen once PowerO fTwoRecursive(n) is called. It could
be:

1. All the values are EVEN

In the case of sequence of all n being EV EN, we will be dividing n by 2 in all the
calls. The maximum number of this calls can be lgn.

In every call, we have 2 operations. Hence the number of operations will be 2 - Ign.
2. A sequence with alternate ODD and EV EN values of n. In this case, the maximum

number of recursive calls will be 2 % lgn since the operations n = n — 1 and division
by 2 will come alternatively.

In every call, we have 2 operations. So the number of operations is 2x2-1gn = 41gn.
3. We cannot have a sequence with two consecutive OD D values. Any other sequence

will have number of recursive calls varying between lgn and 2 -1gn. So the number
of operations will be definitely less than the second case.

The maximum number of operations needed with the recursive algorithm is 4 % lgn. As
seen in the graph, for any n > 16, the recursive algorithm has a better performance than



the iterative one.
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