WS 2007,/2008

Fundamental Algorithms

Dmytro Chibisov, Jens Ernst

Fakultat fiir Informatik
TU Miinchen

http://wwwlé.in.tum.de/lehre/2007WS/fa-cse/

Fall Semester 2007

1. Graph Algorithms

Definition 1
Let G = (V, E) be an undirected graph. Select two nodes v, w,
and two edges e, €.

@ v, w are called adjacent iff {v,w} € E
® v, e are called incident iff v € F
® ¢, ¢ are called adjacent iff [ené| > 1

@ ¢ of the form {v,v} = {v} is called loop

Lemma 2
Any undirected graph without loops contains at most

< ;L > = ”(” D edges, |V'| = n. Any undirected graph with loops

n+1

9 >:”("+1)edges V| =n.

contains at most (

Lemma 2
Any undirected graph without loops contains at most

< ;L > = ”(” D edges, |V'| = n. Any undirected graph with loops

n+1

9 >:”("+1)edges V| =n.

contains at most (

Proof.

Easy. Homework.

Lemma 2
Any undirected graph without loops contains at most

< ;L > = ”(” D edges, |V'| = n. Any undirected graph with loops

n+1

9 >:”("+1)edges V| =n.

contains at most (

Proof.

Easy. Homework. Hint: Use < n—24—1) = (" > +n O

Definition 3
Let G = (V, E) be an undirected graph. Select v € V. Define the
neighborhood of v to be N(v) = {w € V : {v,w} € E}.

o deg(v) =[N (v)]
@)(G) = min{deg(v) :v e V}
o A(G) = max{deg(v) :v €V}

Lemma 4
For any undirected G = (V, E) the following is satisfied:

S deg(v) =2 |B|

veV

Lemma 4
For any undirected G = (V, E) the following is satisfied:

S deg(v) =2 |B|

veV

Proof.
> vev deg(v) counts every edge twice.

Definition 5
Let G = (V, E) be an undirected graph. Select v € V. Define the
neighborhood of v to be N(v) = {w € V : {v,w} € E}.

o deg(v) =[N (v)]
@)(G) = min{deg(v) :v e V}
o A(G) = max{deg(v) :v €V}

2. Representation of graphs

2.1 Adjacency matrix

Definition 6
An adjacency matrix for G = (V, E), V = |n| is a (n X n)-matrix
A = (a;j), n >1,j > n such that
@ Case 1: GG is undirected
o a . — 1, {i,j}€E
7 0, {i,j}¢FE
@ Case 2: GG undirected

[1, (,j)€eE
”W‘{o, (i,5) ¢ E

@ Required space for adjacency matrix for [V| = n is ©(n?).

@ The adjacency matrix for an undirected graph is symmetric.

@ The adjacency matrix for a directed graph is symmetric iff for
every directed edge the antiparallel edge exists.

@ The adjacency matrix for a directed graph has diagonal
elements # 0 if there are loops.

2.2 Adjacency lists

Definition 7
An adjacency list is an array consisting of |V| lists, which store the
adjacent vertices for every v € V.
@ The order in which the adjacent vertices are stored can be
chosen arbitrary
@ For directed graphs two adjacency lists are introduced: for
ancestors and for successors

3. Seaching in Graphs
3.1 Depth-First-Search
3.1.1 Recursive Version

@ For every vertex v € V' let us define its DFS-number to be the
number of the step at which v is visited (initialized with 0)

3. Seaching in Graphs
3.1 Depth-First-Search
3.1.1 Recursive Version

@ For every vertex v € V' let us define its DFS-number to be the
number of the step at which v is visited (initialized with 0)

@ Let vg € V be an arbitrary start vertex

3. Seaching in Graphs

3.1 Depth-First-Search
3.1.1 Recursive Version

@ For every vertex v € V' let us define its DFS-number to be the
number of the step at which v is visited (initialized with 0)

@ Let vg € V be an arbitrary start vertex

@ Let counter be a global variable initialized with 1.

3. Seaching in Graphs

3.1 Depth-First-Search
3.1.1 Recursive Version

@ For every vertex v € V' let us define its DFS-number to be the
number of the step at which v is visited (initialized with 0)

@ Let vg € V be an arbitrary start vertex

@ Let counter be a global variable initialized with 1.

Algorithm:
void DFS(vertex v){
v.df snum:= counter++;
foreach (w|(v,w) € E ({v,w} € E)) do
if (w.df snum=0) then DFS(w);
od }

The call
counter:=1;
DFS(v);

leads to visiting all verteces, which are reachable from vg. Thus:

Algorithm:
void DepthFirstSearch(graph G){
counter:=1;
foreach (v € V) do v.df snum := 0 od
while Jvg € V' : vg.df snum = 0 do DFS(vg) od }

Complexity: O(n 4+ m) (every vertex is visited plus every edge is
visited (< 2 times)

3.1.2 lterative version

Consider the data structure called stack. The following operations
have to be supported:

@ void push(int) — insert the element into the stack
@ in pop() — delete the element into the stack
Properties:
@ LIFO (Last Input First Output)
@ The elements are inserted in the same order push is called

@ The element deleted from the stack using pop is the one most
recently inserted

DepthFirstSearch:

void DepthFirstSearch(vertex v){
initialize the empty stack; // global variable
foreach (v € V') do v.df snum := 0; od
while Jvg € V' : vg.df snum = 0 do DFS(vg) od
od }

DepthFirstSearch:

void DepthFirstSearch(vertex v){
initialize the empty stack; // global variable
foreach (v € V') do v.df snum := 0; od
while Jvg € V' : vg.df snum = 0 do DFS(vg) od
od }

DFS:
void DFS(vertex v){
push(v);
while (stack not empty) do
v:= pop();
if (v.dfsnum = 0) then
v.df snum:=counter+-;
foreach (w|(v,w) € E ({v,w} € E)) do
push(w);
od
fi
od }

3.2 Classification of edges:
DFS performs the partition of edges into four classes:
o Tree edges — edge (u,v) is a tree edge if v was first
discovered by exploring edge (u,v).
@ Back edges — edge (u,v) connecting a vertex u to an
ancestor v in a depth-first tree.

o Forward edges — nontree edges (u,v) connecting a vertex u
to a descendant v in a depth-first tree.

o Cross edges — are all other edges.

	Operations for (a,b)-Trees
	is_element
	insert
	insert: Rebalancing
	delete
	delete: Rebalancing

	Graph Algorithms
	Representation of graphs
	Adjacency matrix
	Adjacency lists

	Seaching in Graphs
	Depth-First-Search
	Classification of edges:

