
WS 2007/2008

Fundamental Algorithms

Dmytro Chibisov, Jens Ernst

Fakultät für Informatik

TU München

http://www14.in.tum.de/lehre/2007WS/fa-cse/

Fall Semester 2007



1. (a,b)-Trees

As we saw in the previous section, the efficiency of standard
operations on binary search trees depends on the maximum tree
height. Using height balancing, we ensure that trees cannot
degenerate linearly but instead have logarithmic height. Let us
extend this approach to more general trees.

Motivation: assume tree nodes are stored in secondary storage
(hard disk). Comparisons of keys of binary trees would be too time
expensive due to mechanical positioning of the read-write head of
the hard drive. Reading blocks of data (sectors, pages, etc.) is
relatively fast provided the read-write head is positioned.
Idea: store blocks of data in nodes of trees !
Advantages: faster access to the data and decreasing height of
trees !
(a,b)-Trees have been invented by Rudolf Bayer and Edward M.
McCreight (1976).



1. (a,b)-Trees

As we saw in the previous section, the efficiency of standard
operations on binary search trees depends on the maximum tree
height. Using height balancing, we ensure that trees cannot
degenerate linearly but instead have logarithmic height. Let us
extend this approach to more general trees.

Motivation: assume tree nodes are stored in secondary storage
(hard disk). Comparisons of keys of binary trees would be too time
expensive due to mechanical positioning of the read-write head of
the hard drive. Reading blocks of data (sectors, pages, etc.) is
relatively fast provided the read-write head is positioned.
Idea: store blocks of data in nodes of trees !
Advantages: faster access to the data and decreasing height of
trees !
(a,b)-Trees have been invented by Rudolf Bayer and Edward M.
McCreight (1976).



1. (a,b)-Trees

As we saw in the previous section, the efficiency of standard
operations on binary search trees depends on the maximum tree
height. Using height balancing, we ensure that trees cannot
degenerate linearly but instead have logarithmic height. Let us
extend this approach to more general trees.

Motivation: assume tree nodes are stored in secondary storage
(hard disk). Comparisons of keys of binary trees would be too time
expensive due to mechanical positioning of the read-write head of
the hard drive. Reading blocks of data (sectors, pages, etc.) is
relatively fast provided the read-write head is positioned.
Idea: store blocks of data in nodes of trees !
Advantages: faster access to the data and decreasing height of
trees !
(a,b)-Trees have been invented by Rudolf Bayer and Edward M.
McCreight (1976).



1. (a,b)-Trees

As we saw in the previous section, the efficiency of standard
operations on binary search trees depends on the maximum tree
height. Using height balancing, we ensure that trees cannot
degenerate linearly but instead have logarithmic height. Let us
extend this approach to more general trees.

Motivation: assume tree nodes are stored in secondary storage
(hard disk). Comparisons of keys of binary trees would be too time
expensive due to mechanical positioning of the read-write head of
the hard drive. Reading blocks of data (sectors, pages, etc.) is
relatively fast provided the read-write head is positioned.
Idea: store blocks of data in nodes of trees !
Advantages: faster access to the data and decreasing height of
trees !
(a,b)-Trees have been invented by Rudolf Bayer and Edward M.
McCreight (1976).



Definition 1
Consider a node v of a search tree and let deg(v) be the number
of sons of v. (a,b)-Tree is a tree with following properties:

All keys are located on the same level

For every vertex v internal b ≥ deg(v) ≥ a

a ≥ 2 and b ≥ 2a − 1

For the root b ≥ deg(v) ≥ 2

For every vertex v all keys stored in the ith subtree are less
than keys stored in the (i + 1)th subtree

For every internal node v, let mv = deg(v). Then

v has (mv − 1) key values
k1 < k2 < · · · < kmv−1

For 1 ≤ i ≤ mv the following is satisfied: ki−1 < keys in the
ith subtree ≤ ki



Definition 1
Consider a node v of a search tree and let deg(v) be the number
of sons of v. (a,b)-Tree is a tree with following properties:

All keys are located on the same level

For every vertex v internal b ≥ deg(v) ≥ a

a ≥ 2 and b ≥ 2a − 1

For the root b ≥ deg(v) ≥ 2

For every vertex v all keys stored in the ith subtree are less
than keys stored in the (i + 1)th subtree

For every internal node v, let mv = deg(v). Then

v has (mv − 1) key values
k1 < k2 < · · · < kmv−1

For 1 ≤ i ≤ mv the following is satisfied: ki−1 < keys in the
ith subtree ≤ ki



Definition 1
Consider a node v of a search tree and let deg(v) be the number
of sons of v. (a,b)-Tree is a tree with following properties:

All keys are located on the same level

For every vertex v internal b ≥ deg(v) ≥ a

a ≥ 2 and b ≥ 2a − 1

For the root b ≥ deg(v) ≥ 2

For every vertex v all keys stored in the ith subtree are less
than keys stored in the (i + 1)th subtree

For every internal node v, let mv = deg(v). Then

v has (mv − 1) key values
k1 < k2 < · · · < kmv−1

For 1 ≤ i ≤ mv the following is satisfied: ki−1 < keys in the
ith subtree ≤ ki



Definition 1
Consider a node v of a search tree and let deg(v) be the number
of sons of v. (a,b)-Tree is a tree with following properties:

All keys are located on the same level

For every vertex v internal b ≥ deg(v) ≥ a

a ≥ 2 and b ≥ 2a − 1

For the root b ≥ deg(v) ≥ 2

For every vertex v all keys stored in the ith subtree are less
than keys stored in the (i + 1)th subtree

For every internal node v, let mv = deg(v). Then

v has (mv − 1) key values
k1 < k2 < · · · < kmv−1

For 1 ≤ i ≤ mv the following is satisfied: ki−1 < keys in the
ith subtree ≤ ki



Definition 1
Consider a node v of a search tree and let deg(v) be the number
of sons of v. (a,b)-Tree is a tree with following properties:

All keys are located on the same level

For every vertex v internal b ≥ deg(v) ≥ a

a ≥ 2 and b ≥ 2a − 1

For the root b ≥ deg(v) ≥ 2

For every vertex v all keys stored in the ith subtree are less
than keys stored in the (i + 1)th subtree

For every internal node v, let mv = deg(v). Then

v has (mv − 1) key values
k1 < k2 < · · · < kmv−1

For 1 ≤ i ≤ mv the following is satisfied: ki−1 < keys in the
ith subtree ≤ ki



Definition 1
Consider a node v of a search tree and let deg(v) be the number
of sons of v. (a,b)-Tree is a tree with following properties:

All keys are located on the same level

For every vertex v internal b ≥ deg(v) ≥ a

a ≥ 2 and b ≥ 2a − 1

For the root b ≥ deg(v) ≥ 2

For every vertex v all keys stored in the ith subtree are less
than keys stored in the (i + 1)th subtree

For every internal node v, let mv = deg(v). Then

v has (mv − 1) key values
k1 < k2 < · · · < kmv−1

For 1 ≤ i ≤ mv the following is satisfied: ki−1 < keys in the
ith subtree ≤ ki



Definition 1
Consider a node v of a search tree and let deg(v) be the number
of sons of v. (a,b)-Tree is a tree with following properties:

All keys are located on the same level

For every vertex v internal b ≥ deg(v) ≥ a

a ≥ 2 and b ≥ 2a − 1

For the root b ≥ deg(v) ≥ 2

For every vertex v all keys stored in the ith subtree are less
than keys stored in the (i + 1)th subtree

For every internal node v, let mv = deg(v). Then

v has (mv − 1) key values
k1 < k2 < · · · < kmv−1

For 1 ≤ i ≤ mv the following is satisfied: ki−1 < keys in the
ith subtree ≤ ki



Example 2

The (2,3)-tree:



Example 3

The (2,3)-tree:



2. Operations for (a,b)-Trees

2.1 is element

This operation has to be implemented like for general binary search
trees. The only difference is that the higher branching factor has to
be treated appropriately.

Algorithm:

data is element(key k){
v:=root of the tree
while (v is not a leaf) do

i := min{j|1 ≤ j ≤ deg(v) ∧ k ≤ kj}
v := ith child of v

od
location := v
if (v.key = k) then location := v; return v.data

else return NULL;
fi

}



2.2 insert

is element finds the position for the element to be inserted
(stored in location)

attach new leaf to the leaf in location

If the branching factor of the leaf in location ≥ b + 1 – do
rebalancing



2.3 insert: Rebalancing

Split the node w, deg(w) ≥ b + 1 into v1 and v2.

Assign first a sons of w to v1, and the remaining b + 1 − a
sons to v2.

Since b ≥ 2a − 1 (see Definition 1), we obtain that
deg(v1) ≥ a, deg(v2) ≥ a.

This may increase the degree of the ancestor of w – repeat
splitting for the ancestor of w.

In necessary – proceed up to the root.

The root may also be divided into two nodes, then create a
new root – the height of the tree increases.

Since according to Definition 1 b ≥ deg(root) ≥ 2, splitting of
the root into two nodes is valid.



Example 4

Insert 6:



Example 5

Rebalancing:



Example 6

Rebalancing:



Example 7

Rebalancing:



2.4 delete

is element finds the position for the element to be removed
(stored in location)

remove the element stored in location

If the branching factor of the ancestor of the node in location
< a – do rebalancing



2.5 delete: Rebalancing

Let deg(v1) < a – merge v1 and its brother v2 into the new
node w.

If deg(w) > b, split w into two new nodes v1, v2 and assign
fist a sons to the first node.

Since b ≥ 2a − 1 (see Definition 1), we obtain that
deg(v1) ≥ a, deg(v2) ≥ a.
The number of sons of the ancestor of w is not changed in this
case.

If deg(w) ≤ b the merging may decrease the degree of the
ancestor of w – repeat merging for the ancestor of w.

In necessary – proceed up to the root.



Theorem 8
For the (a,b)-Tree with n nodes and height h the following is
satisfied:

2ah−1 ≤ n ≤ bh

logb(n) ≤ h ≤ loga(n/2) + 1

Proof.
Easy. Homework.



Theorem 8
For the (a,b)-Tree with n nodes and height h the following is
satisfied:

2ah−1 ≤ n ≤ bh

logb(n) ≤ h ≤ loga(n/2) + 1

Proof.
Easy. Homework.


	Graph Algorithms
	Representation of graphs
	Adjacency matrix


