
WS 2007/2008

Fundamental Algorithms

Dmytro Chibisov, Jens Ernst

Fakultät für Informatik

TU München

http://www14.in.tum.de/lehre/2007WS/fa-cse/

Fall Semester 2007



1. Heapsort

Definition 1
A heap is an almost complete binary tree whose vertices are
annotated with key values such that the heap condition is satisfied
in each vertex v: The key value stored in v is at most as large as
the key values stored in v’s children.
Hence, the root of the heap is annotated with a minimum key
value. And each path of vertices from the root to a leaf is
annotated with increasing sequence of keys.

A data structure is a structued method of storing data elements
(typically permitting efficient access to its contents), along with a
set of operations that allow access to the data structure and
manipulation of the structure in such a way that the storage
organization remains intact. We shall now see how to define a set
of operations on heaps which will help us write down the HeapSort
algrithm in just 4 lines of code.



1. Heapsort

Definition 1
A heap is an almost complete binary tree whose vertices are
annotated with key values such that the heap condition is satisfied
in each vertex v: The key value stored in v is at most as large as
the key values stored in v’s children.
Hence, the root of the heap is annotated with a minimum key
value. And each path of vertices from the root to a leaf is
annotated with increasing sequence of keys.

A data structure is a structued method of storing data elements
(typically permitting efficient access to its contents), along with a
set of operations that allow access to the data structure and
manipulation of the structure in such a way that the storage
organization remains intact. We shall now see how to define a set
of operations on heaps which will help us write down the HeapSort
algrithm in just 4 lines of code.



1.1 Operations on Heaps

The three heap operations that we need for sorting keys are

1 void reheap (heap h) : repair a ”heap” in which the heap
condition is violated at the root

2 heap create heap (key A[], unsigned n) : construct a heap
from an array of key values

3 key delete min(heap h) : delete the key stored at the root and
restore the heap



1.1 Operations on Heaps

The three heap operations that we need for sorting keys are

1 void reheap (heap h) : repair a ”heap” in which the heap
condition is violated at the root

2 heap create heap (key A[], unsigned n) : construct a heap
from an array of key values

3 key delete min(heap h) : delete the key stored at the root and
restore the heap



1.1 Operations on Heaps

The three heap operations that we need for sorting keys are

1 void reheap (heap h) : repair a ”heap” in which the heap
condition is violated at the root

2 heap create heap (key A[], unsigned n) : construct a heap
from an array of key values

3 key delete min(heap h) : delete the key stored at the root and
restore the heap



1.1.1 The reheap-Operation

Suppose an almost complete undirected binary tree with
vertex annotations is given which satisfies the heap condition
at every vertex except the root.

Let v be the tree’s root.

Hence, the key stored at v is not ≤ the keys stored at both of
v’s children (if they exist).

Let v∗ be the child of v that has the smaller key.

Strategy: We exchange the keys of v and v∗. Then the same
procedure is applied recursively to the subtree below v.



1.1.1 The reheap-Operation

Suppose an almost complete undirected binary tree with
vertex annotations is given which satisfies the heap condition
at every vertex except the root.

Let v be the tree’s root.

Hence, the key stored at v is not ≤ the keys stored at both of
v’s children (if they exist).

Let v∗ be the child of v that has the smaller key.

Strategy: We exchange the keys of v and v∗. Then the same
procedure is applied recursively to the subtree below v.



1.1.1 The reheap-Operation

Suppose an almost complete undirected binary tree with
vertex annotations is given which satisfies the heap condition
at every vertex except the root.

Let v be the tree’s root.

Hence, the key stored at v is not ≤ the keys stored at both of
v’s children (if they exist).

Let v∗ be the child of v that has the smaller key.

Strategy: We exchange the keys of v and v∗. Then the same
procedure is applied recursively to the subtree below v.



1.1.1 The reheap-Operation

Suppose an almost complete undirected binary tree with
vertex annotations is given which satisfies the heap condition
at every vertex except the root.

Let v be the tree’s root.

Hence, the key stored at v is not ≤ the keys stored at both of
v’s children (if they exist).

Let v∗ be the child of v that has the smaller key.

Strategy: We exchange the keys of v and v∗. Then the same
procedure is applied recursively to the subtree below v.



1.1.1 The reheap-Operation

Suppose an almost complete undirected binary tree with
vertex annotations is given which satisfies the heap condition
at every vertex except the root.

Let v be the tree’s root.

Hence, the key stored at v is not ≤ the keys stored at both of
v’s children (if they exist).

Let v∗ be the child of v that has the smaller key.

Strategy: We exchange the keys of v and v∗. Then the same
procedure is applied recursively to the subtree below v.



Algorithm:

void reheap(heap h){
v :=root of h
while (heap-condition not satisfied at v) do

v∗ :=child of v with the smallest key
exchange keys of v and v∗

v := v∗

od
}

Once a leaf has been reached the heap condition is trivially
satisfied. Therefore the procedure terminates.

Correctness follows from the fact that after each iteration, the
subtree in which the heap condition is violated strictly shrinks.

Complexity: Each iteration costs constant time. The
complexity is therefore proportional to the height/depth of the
tree. If h has n vertices then the time complexity is O(log n).



Algorithm:

void reheap(heap h){
v :=root of h
while (heap-condition not satisfied at v) do

v∗ :=child of v with the smallest key
exchange keys of v and v∗

v := v∗

od
}

Once a leaf has been reached the heap condition is trivially
satisfied. Therefore the procedure terminates.

Correctness follows from the fact that after each iteration, the
subtree in which the heap condition is violated strictly shrinks.

Complexity: Each iteration costs constant time. The
complexity is therefore proportional to the height/depth of the
tree. If h has n vertices then the time complexity is O(log n).



Algorithm:

void reheap(heap h){
v :=root of h
while (heap-condition not satisfied at v) do

v∗ :=child of v with the smallest key
exchange keys of v and v∗

v := v∗

od
}

Once a leaf has been reached the heap condition is trivially
satisfied. Therefore the procedure terminates.

Correctness follows from the fact that after each iteration, the
subtree in which the heap condition is violated strictly shrinks.

Complexity: Each iteration costs constant time. The
complexity is therefore proportional to the height/depth of the
tree. If h has n vertices then the time complexity is O(log n).



1.1.2 The delete min-Operation

We need to delete a key of minimum value, stored at the root
We replace the root by the only vertex that can be removed
without invalidating the graph’s property of being an almost
complete binary tree: the rightmost vertex on the deepest level
This violates the heap condition (only) at the root. reheap()
Complexity: O(d(h)) = O(log n)

Algorithm:

key delete min(heap h){
v :=root of h
k := v.key
v′ :=rightmost leaf on h’s deepest level
v.key := v′.key
delete v′

reheap(h)
return k

}



1.1.2 The delete min-Operation

We need to delete a key of minimum value, stored at the root
We replace the root by the only vertex that can be removed
without invalidating the graph’s property of being an almost
complete binary tree: the rightmost vertex on the deepest level
This violates the heap condition (only) at the root. reheap()
Complexity: O(d(h)) = O(log n)

Algorithm:

key delete min(heap h){
v :=root of h
k := v.key
v′ :=rightmost leaf on h’s deepest level
v.key := v′.key
delete v′

reheap(h)
return k

}



1.1.2 The delete min-Operation

We need to delete a key of minimum value, stored at the root
We replace the root by the only vertex that can be removed
without invalidating the graph’s property of being an almost
complete binary tree: the rightmost vertex on the deepest level
This violates the heap condition (only) at the root. reheap()
Complexity: O(d(h)) = O(log n)

Algorithm:

key delete min(heap h){
v :=root of h
k := v.key
v′ :=rightmost leaf on h’s deepest level
v.key := v′.key
delete v′

reheap(h)
return k

}



1.1.2 The delete min-Operation

We need to delete a key of minimum value, stored at the root
We replace the root by the only vertex that can be removed
without invalidating the graph’s property of being an almost
complete binary tree: the rightmost vertex on the deepest level
This violates the heap condition (only) at the root. reheap()
Complexity: O(d(h)) = O(log n)

Algorithm:

key delete min(heap h){
v :=root of h
k := v.key
v′ :=rightmost leaf on h’s deepest level
v.key := v′.key
delete v′

reheap(h)
return k

}



1.1.2 The delete min-Operation

We need to delete a key of minimum value, stored at the root
We replace the root by the only vertex that can be removed
without invalidating the graph’s property of being an almost
complete binary tree: the rightmost vertex on the deepest level
This violates the heap condition (only) at the root. reheap()
Complexity: O(d(h)) = O(log n)

Algorithm:

key delete min(heap h){
v :=root of h
k := v.key
v′ :=rightmost leaf on h’s deepest level
v.key := v′.key
delete v′

reheap(h)
return k

}



1.1.2 The delete min-Operation

We need to delete a key of minimum value, stored at the root
We replace the root by the only vertex that can be removed
without invalidating the graph’s property of being an almost
complete binary tree: the rightmost vertex on the deepest level
This violates the heap condition (only) at the root. reheap()
Complexity: O(d(h)) = O(log n)

Algorithm:

key delete min(heap h){
v :=root of h
k := v.key
v′ :=rightmost leaf on h’s deepest level
v.key := v′.key
delete v′

reheap(h)
return k

}



1.1.3 The create heap-Operation

Given an array of key values, we want to create a heap
containing exactly these keys

We first store them in an almost complete binary tree,
assigning the keys to vertices randomly

To satisfy the heap condition in all vertices, we rearrange the
assignment. A method can be derived by induction.

I. The leafs already satisfy the heap condition.
II. Suppose, all subtrees on the level ℓ + 1 satisfy the heap

condition. Let v be a vertex on the level ℓ. Then v’s subtree
violates the heap condition only at its root. Apply reheap().

The approach resulting from this induction merely amounts to
applying reheap() to all vertices in the tree, in a bottom-up
order.



1.1.3 The create heap-Operation

Given an array of key values, we want to create a heap
containing exactly these keys

We first store them in an almost complete binary tree,
assigning the keys to vertices randomly

To satisfy the heap condition in all vertices, we rearrange the
assignment. A method can be derived by induction.

I. The leafs already satisfy the heap condition.
II. Suppose, all subtrees on the level ℓ + 1 satisfy the heap

condition. Let v be a vertex on the level ℓ. Then v’s subtree
violates the heap condition only at its root. Apply reheap().

The approach resulting from this induction merely amounts to
applying reheap() to all vertices in the tree, in a bottom-up
order.



1.1.3 The create heap-Operation

Given an array of key values, we want to create a heap
containing exactly these keys

We first store them in an almost complete binary tree,
assigning the keys to vertices randomly

To satisfy the heap condition in all vertices, we rearrange the
assignment. A method can be derived by induction.

I. The leafs already satisfy the heap condition.
II. Suppose, all subtrees on the level ℓ + 1 satisfy the heap

condition. Let v be a vertex on the level ℓ. Then v’s subtree
violates the heap condition only at its root. Apply reheap().

The approach resulting from this induction merely amounts to
applying reheap() to all vertices in the tree, in a bottom-up
order.



1.1.3 The create heap-Operation

Given an array of key values, we want to create a heap
containing exactly these keys

We first store them in an almost complete binary tree,
assigning the keys to vertices randomly

To satisfy the heap condition in all vertices, we rearrange the
assignment. A method can be derived by induction.

I. The leafs already satisfy the heap condition.
II. Suppose, all subtrees on the level ℓ + 1 satisfy the heap

condition. Let v be a vertex on the level ℓ. Then v’s subtree
violates the heap condition only at its root. Apply reheap().

The approach resulting from this induction merely amounts to
applying reheap() to all vertices in the tree, in a bottom-up
order.



1.1.3 The create heap-Operation

Given an array of key values, we want to create a heap
containing exactly these keys

We first store them in an almost complete binary tree,
assigning the keys to vertices randomly

To satisfy the heap condition in all vertices, we rearrange the
assignment. A method can be derived by induction.

I. The leafs already satisfy the heap condition.
II. Suppose, all subtrees on the level ℓ + 1 satisfy the heap

condition. Let v be a vertex on the level ℓ. Then v’s subtree
violates the heap condition only at its root. Apply reheap().

The approach resulting from this induction merely amounts to
applying reheap() to all vertices in the tree, in a bottom-up
order.



1.1.3 The create heap-Operation

Given an array of key values, we want to create a heap
containing exactly these keys

We first store them in an almost complete binary tree,
assigning the keys to vertices randomly

To satisfy the heap condition in all vertices, we rearrange the
assignment. A method can be derived by induction.

I. The leafs already satisfy the heap condition.
II. Suppose, all subtrees on the level ℓ + 1 satisfy the heap

condition. Let v be a vertex on the level ℓ. Then v’s subtree
violates the heap condition only at its root. Apply reheap().

The approach resulting from this induction merely amounts to
applying reheap() to all vertices in the tree, in a bottom-up
order.



Algorithm:

heap create heap(key A[], unsigned n){
construct an almost complete binary tree h containing the n
keys in A[]
for ℓ := d(h) downto 1 do

foreach node v on level ℓ in h do
t :=subtree rooted at v
reheap(t)

od
od
return h

}

Complexity: An upper bound for the running time can be obtained
easily — We apply reheap n times, hence the complexity is
bounded by O(n log n). In fact, this is not a tight bound, as we
shall see shortly.



1.2 Building the HeapSort Algorithm

We can now take advantage of the Heap data structure with
all its operations.

Using it for sorting an array of keys is simple:

1. Create a heap containing all the keys
2. Until the heap is empty, remove the key of minimum value.

This results in an increasing sequence.
3. Store these keys in the array

Algorithm:

void HeapSort(key A[], unsigned n){
heap h :=create heap(A, n)
for i := 1 to n do

A[i] :=delete min(h)
od

}



1.2 Building the HeapSort Algorithm

We can now take advantage of the Heap data structure with
all its operations.

Using it for sorting an array of keys is simple:

1. Create a heap containing all the keys
2. Until the heap is empty, remove the key of minimum value.

This results in an increasing sequence.
3. Store these keys in the array

Algorithm:

void HeapSort(key A[], unsigned n){
heap h :=create heap(A, n)
for i := 1 to n do

A[i] :=delete min(h)
od

}



1.2 Building the HeapSort Algorithm

We can now take advantage of the Heap data structure with
all its operations.

Using it for sorting an array of keys is simple:

1. Create a heap containing all the keys
2. Until the heap is empty, remove the key of minimum value.

This results in an increasing sequence.
3. Store these keys in the array

Algorithm:

void HeapSort(key A[], unsigned n){
heap h :=create heap(A, n)
for i := 1 to n do

A[i] :=delete min(h)
od

}



1.2 Building the HeapSort Algorithm

We can now take advantage of the Heap data structure with
all its operations.

Using it for sorting an array of keys is simple:

1. Create a heap containing all the keys
2. Until the heap is empty, remove the key of minimum value.

This results in an increasing sequence.
3. Store these keys in the array

Algorithm:

void HeapSort(key A[], unsigned n){
heap h :=create heap(A, n)
for i := 1 to n do

A[i] :=delete min(h)
od

}



1.2 Building the HeapSort Algorithm

We can now take advantage of the Heap data structure with
all its operations.

Using it for sorting an array of keys is simple:

1. Create a heap containing all the keys
2. Until the heap is empty, remove the key of minimum value.

This results in an increasing sequence.
3. Store these keys in the array

Algorithm:

void HeapSort(key A[], unsigned n){
heap h :=create heap(A, n)
for i := 1 to n do

A[i] :=delete min(h)
od

}



1.3 Implementation

We have not yet seen how to store the heap.

We could of course use structs and pointers to represent the
heap, but thanks to its regular structure there is a better way.

The keys contained in the heap are stored linearly in an array,
while preserving all topological information:

The keys are stored in a top-down, left-to-right order.

Suppose, a vertex v (or its key) is stored at index i in the
array. Then,

i. the left child of v has index 2i
ii. the right child of v has index 2i + 1
iii. the father of v has index ⌊i/2⌋
iv. the level of v is ℓ(v) = ⌊log i⌋ + 1

Try to prove the above statements as a homwork.

Try to write down the heap operations in terms of the
linearized heap representation.



1.3 Implementation

We have not yet seen how to store the heap.

We could of course use structs and pointers to represent the
heap, but thanks to its regular structure there is a better way.

The keys contained in the heap are stored linearly in an array,
while preserving all topological information:

The keys are stored in a top-down, left-to-right order.

Suppose, a vertex v (or its key) is stored at index i in the
array. Then,

i. the left child of v has index 2i
ii. the right child of v has index 2i + 1
iii. the father of v has index ⌊i/2⌋
iv. the level of v is ℓ(v) = ⌊log i⌋ + 1

Try to prove the above statements as a homwork.

Try to write down the heap operations in terms of the
linearized heap representation.



1.3 Implementation

We have not yet seen how to store the heap.

We could of course use structs and pointers to represent the
heap, but thanks to its regular structure there is a better way.

The keys contained in the heap are stored linearly in an array,
while preserving all topological information:

The keys are stored in a top-down, left-to-right order.

Suppose, a vertex v (or its key) is stored at index i in the
array. Then,

i. the left child of v has index 2i
ii. the right child of v has index 2i + 1
iii. the father of v has index ⌊i/2⌋
iv. the level of v is ℓ(v) = ⌊log i⌋ + 1

Try to prove the above statements as a homwork.

Try to write down the heap operations in terms of the
linearized heap representation.



1.3 Implementation

We have not yet seen how to store the heap.

We could of course use structs and pointers to represent the
heap, but thanks to its regular structure there is a better way.

The keys contained in the heap are stored linearly in an array,
while preserving all topological information:

The keys are stored in a top-down, left-to-right order.

Suppose, a vertex v (or its key) is stored at index i in the
array. Then,

i. the left child of v has index 2i
ii. the right child of v has index 2i + 1
iii. the father of v has index ⌊i/2⌋
iv. the level of v is ℓ(v) = ⌊log i⌋ + 1

Try to prove the above statements as a homwork.

Try to write down the heap operations in terms of the
linearized heap representation.



1.3 Implementation

We have not yet seen how to store the heap.

We could of course use structs and pointers to represent the
heap, but thanks to its regular structure there is a better way.

The keys contained in the heap are stored linearly in an array,
while preserving all topological information:

The keys are stored in a top-down, left-to-right order.

Suppose, a vertex v (or its key) is stored at index i in the
array. Then,

i. the left child of v has index 2i
ii. the right child of v has index 2i + 1
iii. the father of v has index ⌊i/2⌋
iv. the level of v is ℓ(v) = ⌊log i⌋ + 1

Try to prove the above statements as a homwork.

Try to write down the heap operations in terms of the
linearized heap representation.



1.3 Implementation

We have not yet seen how to store the heap.

We could of course use structs and pointers to represent the
heap, but thanks to its regular structure there is a better way.

The keys contained in the heap are stored linearly in an array,
while preserving all topological information:

The keys are stored in a top-down, left-to-right order.

Suppose, a vertex v (or its key) is stored at index i in the
array. Then,

i. the left child of v has index 2i
ii. the right child of v has index 2i + 1
iii. the father of v has index ⌊i/2⌋
iv. the level of v is ℓ(v) = ⌊log i⌋ + 1

Try to prove the above statements as a homwork.

Try to write down the heap operations in terms of the
linearized heap representation.



1.3 Implementation

We have not yet seen how to store the heap.

We could of course use structs and pointers to represent the
heap, but thanks to its regular structure there is a better way.

The keys contained in the heap are stored linearly in an array,
while preserving all topological information:

The keys are stored in a top-down, left-to-right order.

Suppose, a vertex v (or its key) is stored at index i in the
array. Then,

i. the left child of v has index 2i
ii. the right child of v has index 2i + 1
iii. the father of v has index ⌊i/2⌋
iv. the level of v is ℓ(v) = ⌊log i⌋ + 1

Try to prove the above statements as a homwork.

Try to write down the heap operations in terms of the
linearized heap representation.



1.3 Implementation

We have not yet seen how to store the heap.

We could of course use structs and pointers to represent the
heap, but thanks to its regular structure there is a better way.

The keys contained in the heap are stored linearly in an array,
while preserving all topological information:

The keys are stored in a top-down, left-to-right order.

Suppose, a vertex v (or its key) is stored at index i in the
array. Then,

i. the left child of v has index 2i
ii. the right child of v has index 2i + 1
iii. the father of v has index ⌊i/2⌋
iv. the level of v is ℓ(v) = ⌊log i⌋ + 1

Try to prove the above statements as a homwork.

Try to write down the heap operations in terms of the
linearized heap representation.



1.3 Implementation

We have not yet seen how to store the heap.

We could of course use structs and pointers to represent the
heap, but thanks to its regular structure there is a better way.

The keys contained in the heap are stored linearly in an array,
while preserving all topological information:

The keys are stored in a top-down, left-to-right order.

Suppose, a vertex v (or its key) is stored at index i in the
array. Then,

i. the left child of v has index 2i
ii. the right child of v has index 2i + 1
iii. the father of v has index ⌊i/2⌋
iv. the level of v is ℓ(v) = ⌊log i⌋ + 1

Try to prove the above statements as a homwork.

Try to write down the heap operations in terms of the
linearized heap representation.



1.3 Implementation

We have not yet seen how to store the heap.

We could of course use structs and pointers to represent the
heap, but thanks to its regular structure there is a better way.

The keys contained in the heap are stored linearly in an array,
while preserving all topological information:

The keys are stored in a top-down, left-to-right order.

Suppose, a vertex v (or its key) is stored at index i in the
array. Then,

i. the left child of v has index 2i
ii. the right child of v has index 2i + 1
iii. the father of v has index ⌊i/2⌋
iv. the level of v is ℓ(v) = ⌊log i⌋ + 1

Try to prove the above statements as a homwork.

Try to write down the heap operations in terms of the
linearized heap representation.



1.3 Implementation

We have not yet seen how to store the heap.

We could of course use structs and pointers to represent the
heap, but thanks to its regular structure there is a better way.

The keys contained in the heap are stored linearly in an array,
while preserving all topological information:

The keys are stored in a top-down, left-to-right order.

Suppose, a vertex v (or its key) is stored at index i in the
array. Then,

i. the left child of v has index 2i
ii. the right child of v has index 2i + 1
iii. the father of v has index ⌊i/2⌋
iv. the level of v is ℓ(v) = ⌊log i⌋ + 1

Try to prove the above statements as a homwork.

Try to write down the heap operations in terms of the
linearized heap representation.



1.4 Putting all of it together

We use the linearized representation for heaps: Key array A[]
is used to contain the heap structure.

A[] is subdivided into two regions:

The left hand side contains the heap
The right hand side contains a sorted sequence of keys.
Initially the right hand side region is empty, and the entire
array contains the heap
As the algorithm progresses, minimum keys are moved from
the heap region into the sorted region
Each step requires a delete min() and a reheap() operation
The procedure terminates when the heap region is empty and
all keys are sorted



1.4 Putting all of it together

We use the linearized representation for heaps: Key array A[]
is used to contain the heap structure.

A[] is subdivided into two regions:

The left hand side contains the heap
The right hand side contains a sorted sequence of keys.
Initially the right hand side region is empty, and the entire
array contains the heap
As the algorithm progresses, minimum keys are moved from
the heap region into the sorted region
Each step requires a delete min() and a reheap() operation
The procedure terminates when the heap region is empty and
all keys are sorted



1.4 Putting all of it together

We use the linearized representation for heaps: Key array A[]
is used to contain the heap structure.

A[] is subdivided into two regions:

The left hand side contains the heap
The right hand side contains a sorted sequence of keys.
Initially the right hand side region is empty, and the entire
array contains the heap
As the algorithm progresses, minimum keys are moved from
the heap region into the sorted region
Each step requires a delete min() and a reheap() operation
The procedure terminates when the heap region is empty and
all keys are sorted



1.4 Putting all of it together

We use the linearized representation for heaps: Key array A[]
is used to contain the heap structure.

A[] is subdivided into two regions:

The left hand side contains the heap
The right hand side contains a sorted sequence of keys.
Initially the right hand side region is empty, and the entire
array contains the heap
As the algorithm progresses, minimum keys are moved from
the heap region into the sorted region
Each step requires a delete min() and a reheap() operation
The procedure terminates when the heap region is empty and
all keys are sorted



1.4 Putting all of it together

We use the linearized representation for heaps: Key array A[]
is used to contain the heap structure.

A[] is subdivided into two regions:

The left hand side contains the heap
The right hand side contains a sorted sequence of keys.
Initially the right hand side region is empty, and the entire
array contains the heap
As the algorithm progresses, minimum keys are moved from
the heap region into the sorted region
Each step requires a delete min() and a reheap() operation
The procedure terminates when the heap region is empty and
all keys are sorted



1.4 Putting all of it together

We use the linearized representation for heaps: Key array A[]
is used to contain the heap structure.

A[] is subdivided into two regions:

The left hand side contains the heap
The right hand side contains a sorted sequence of keys.
Initially the right hand side region is empty, and the entire
array contains the heap
As the algorithm progresses, minimum keys are moved from
the heap region into the sorted region
Each step requires a delete min() and a reheap() operation
The procedure terminates when the heap region is empty and
all keys are sorted



1.4 Putting all of it together

We use the linearized representation for heaps: Key array A[]
is used to contain the heap structure.

A[] is subdivided into two regions:

The left hand side contains the heap
The right hand side contains a sorted sequence of keys.
Initially the right hand side region is empty, and the entire
array contains the heap
As the algorithm progresses, minimum keys are moved from
the heap region into the sorted region
Each step requires a delete min() and a reheap() operation
The procedure terminates when the heap region is empty and
all keys are sorted



1.4 Putting all of it together

We use the linearized representation for heaps: Key array A[]
is used to contain the heap structure.

A[] is subdivided into two regions:

The left hand side contains the heap
The right hand side contains a sorted sequence of keys.
Initially the right hand side region is empty, and the entire
array contains the heap
As the algorithm progresses, minimum keys are moved from
the heap region into the sorted region
Each step requires a delete min() and a reheap() operation
The procedure terminates when the heap region is empty and
all keys are sorted



Algorithm:

void HeapSort(key A[], unsigned n){
for k := n downto 1 do // create heap

reheap(A, n, k)
od
for k := n downto 1 do // n× delete min

swap A[1] and A[k]
reheap(A, k, 1)

od
for k := 1 to ⌊n/2⌋ do // reverse sorted array

swap A[k] and A[n − k + 1]
od

}



reheap:

void reheap (key A[], unsigned n, unsigned r){// r ≡ root
unsigned i := r // current node
unsigned j := 2r // 1st child of i
while (j ≤ n) do

if (j + 1 ≤ n∧A[j + 1] < A[j]) then j + + fi // use 2nd child
if (A[j] < A[i]) then

swap A[i] and A[j]
j:=2j

else break// heap condition satisfied
fi

od
}



1.5 Complexity

Let us analyze the number of key comparisons needed to sort n
keys, using MergeSort.

To this end, we define
Vreheap(n, i) := # comparisons for reheap() in subtree rooted at i

In the worst case, reheap() has to descend all the way from the
root to a leaf. Hence, it holds that

Vreheap(n, i) ≤ 2 · (⌊log n⌋ − ⌊log i⌋)



1.5 Complexity

Let us analyze the number of key comparisons needed to sort n
keys, using MergeSort.

To this end, we define
Vreheap(n, i) := # comparisons for reheap() in subtree rooted at i

In the worst case, reheap() has to descend all the way from the
root to a leaf. Hence, it holds that

Vreheap(n, i) ≤ 2 · (⌊log n⌋ − ⌊log i⌋)



1.5 Complexity

Let us analyze the number of key comparisons needed to sort n
keys, using MergeSort.

To this end, we define
Vreheap(n, i) := # comparisons for reheap() in subtree rooted at i

In the worst case, reheap() has to descend all the way from the
root to a leaf. Hence, it holds that

Vreheap(n, i) ≤ 2 · (⌊log n⌋ − ⌊log i⌋)



For create heap() we define
Vcreate(n) := # comparisons for create heap()

Here it holds that

Vcreate(n) ≤
n∑

i=1

Vreheap(n, i)

≤ 2
n∑

i=1

(⌊log n⌋ − ⌊log i⌋)

≤ 2
n∑

i=1

(log n − log i + 1)

= 2n log n + 2n − 2
n∑

i=2

log i

≤∗ 2n log n + 2n − 2n log n − 2/ ln 2(n − 1)
≤ 5n

This shows that our upper bound on the complexity of create heap
was too pessimistic. ∗ It holds that

2
n∑

i=2

log i ≥ 2n log n − 2/ ln 2(n − 1)



For create heap() we define
Vcreate(n) := # comparisons for create heap()

Here it holds that

Vcreate(n) ≤
n∑

i=1

Vreheap(n, i)

≤ 2
n∑

i=1

(⌊log n⌋ − ⌊log i⌋)

≤ 2
n∑

i=1

(log n − log i + 1)

= 2n log n + 2n − 2
n∑

i=2

log i

≤∗ 2n log n + 2n − 2n log n − 2/ ln 2(n − 1)
≤ 5n

This shows that our upper bound on the complexity of create heap
was too pessimistic. ∗ It holds that

2
n∑

i=2

log i ≥ 2n log n − 2/ ln 2(n − 1)



Finally, we define
Vsort(n) := # comparisons for the sorting procedure.

Here we have

Vsort(n) =

n∑

k=1

Vreheap(k, 1) ≤ 2n log n

In total, the number of comparisons for HeapSort is

Vcreate(n) + Vsort(n) = O(n log n).



Finally, we define
Vsort(n) := # comparisons for the sorting procedure.

Here we have

Vsort(n) =

n∑

k=1

Vreheap(k, 1) ≤ 2n log n

In total, the number of comparisons for HeapSort is

Vcreate(n) + Vsort(n) = O(n log n).


	Operations on Heaps
	Building the HeapSort Algorithm
	Implementation
	Putting all of it together
	Complexity
	Quick Sort
	Binary Search Trees
	Operations on Binary Search Trees

	AVL Trees
	Operations on AVL Trees


