
WS 2007/2008

Fundamental Algorithms

Dmytro Chibisov, Jens Ernst

Fakultät für Informatik

TU München

http://www14.in.tum.de/lehre/2007WS/fa-cse/

Fall Semester 2007

1. Minimum Spanning Trees

Definition 1
Tree is a connected (path between any two nodes exists),
undirected graph without cycles.

How to find possible cycles and verify whether a graph is a tree ?

1. Minimum Spanning Trees

Definition 1
Tree is a connected (path between any two nodes exists),
undirected graph without cycles.

How to find possible cycles and verify whether a graph is a tree ?

Computational Problem:

Given a connected dag G = (V, E) and a weight function
c : E → N. Find a tree (V, T) that connects all nodes such that∑

e∈E
c(v) → min.

Definition 2
A set C ⊂ E is a cut if G = (V, E − C) is not connected.

For S ⊂ V , {{u, v}|u ∈ S ∧ v ∈ V − S} forms a cut.

Computational Problem:

Given a connected dag G = (V, E) and a weight function
c : E → N. Find a tree (V, T) that connects all nodes such that∑

e∈E
c(v) → min.

Definition 2
A set C ⊂ E is a cut if G = (V, E − C) is not connected.

For S ⊂ V , {{u, v}|u ∈ S ∧ v ∈ V − S} forms a cut.

Theorem 3
A lightest edge in a cut can be used in an MST.

Proof.
Suppose MST T ′ uses edge e′ between S and V − S and
c(e) ≤ c(e′). Then T = T ′ − {e′} ∪ {e} is also an MST.

Theorem 3
A lightest edge in a cut can be used in an MST.

Proof.
Suppose MST T ′ uses edge e′ between S and V − S and
c(e) ≤ c(e′). Then T = T ′ − {e′} ∪ {e} is also an MST.

Theorem 4
A heaviest edge on a cycle is not needed for an MST.

Proof.
Suppose MST T ′ uses heaviest edge e′ on cycle C and
c(e) ≤ c(e′). Then T = T ′ − {e′} ∪ {e} is also an MST.

1.1 Algorithm of Prim

Input: A connected weighted graph G = (V, E)

Initialize: Vnew = {x}, where x is an arbitrary node,
Enew = {}

Repeat until Vnew = V :

Choose edge {u, v} from E with minimal weight such that
u ∈ Vnew and v not.
Add v to Vnew and {u, v} to Enew

Output: Vnew, Enew.

1.1 Algorithm of Prim

Input: A connected weighted graph G = (V, E)

Initialize: Vnew = {x}, where x is an arbitrary node,
Enew = {}

Repeat until Vnew = V :

Choose edge {u, v} from E with minimal weight such that
u ∈ Vnew and v not.
Add v to Vnew and {u, v} to Enew

Output: Vnew, Enew.

1.1 Algorithm of Prim

Input: A connected weighted graph G = (V, E)

Initialize: Vnew = {x}, where x is an arbitrary node,
Enew = {}

Repeat until Vnew = V :

Choose edge {u, v} from E with minimal weight such that
u ∈ Vnew and v not.
Add v to Vnew and {u, v} to Enew

Output: Vnew, Enew.

1.1 Algorithm of Prim

Input: A connected weighted graph G = (V, E)

Initialize: Vnew = {x}, where x is an arbitrary node,
Enew = {}

Repeat until Vnew = V :

Choose edge {u, v} from E with minimal weight such that
u ∈ Vnew and v not.
Add v to Vnew and {u, v} to Enew

Output: Vnew, Enew.

1.1 Algorithm of Prim

Input: A connected weighted graph G = (V, E)

Initialize: Vnew = {x}, where x is an arbitrary node,
Enew = {}

Repeat until Vnew = V :

Choose edge {u, v} from E with minimal weight such that
u ∈ Vnew and v not.
Add v to Vnew and {u, v} to Enew

Output: Vnew, Enew.

1.1 Algorithm of Prim

Input: A connected weighted graph G = (V, E)

Initialize: Vnew = {x}, where x is an arbitrary node,
Enew = {}

Repeat until Vnew = V :

Choose edge {u, v} from E with minimal weight such that
u ∈ Vnew and v not.
Add v to Vnew and {u, v} to Enew

Output: Vnew, Enew.

What is about complexity of this algorithm ? Obviously, the
complexity depends on the way how the graph is stored.

adjacency matrix: O(|V |2)

using Priority Queues based on Fibonacci-Heaps:
O(|E| + |V |log(|V |))

What is about complexity of this algorithm ? Obviously, the
complexity depends on the way how the graph is stored.

adjacency matrix: O(|V |2)

using Priority Queues based on Fibonacci-Heaps:
O(|E| + |V |log(|V |))

What is about complexity of this algorithm ? Obviously, the
complexity depends on the way how the graph is stored.

adjacency matrix: O(|V |2)

using Priority Queues based on Fibonacci-Heaps:
O(|E| + |V |log(|V |))

What is about complexity of this algorithm ? Obviously, the
complexity depends on the way how the graph is stored.

adjacency matrix: O(|V |2)

using Priority Queues based on Fibonacci-Heaps:
O(|E| + |V |log(|V |))

1.2 Prim algorithm using Priority Queues

Priority Queue is a data structure supporting the following
operations:

insert element - O(log(|E| + |V |))

delete min - O(|E|log(|E| + |V |))

decrease key - O(|E|log(|E| + |V |))

	Minimum Spanning Trees
	Algorithm of Prim
	Prim algorithm using Priority Queues

