WS 2007/2008

Fundamental Algorithms

Dmytro Chibisov, Jens Ernst

Fakultät für Informatik TU München

http://www14.in.tum.de/lehre/2007WS/fa-cse/

Fall Semester 2007

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1. Minimum Spanning Trees

Definition 1

Tree is a connected (path between any two nodes exists), undirected graph without cycles.

How to find possible cycles and verify whether a graph is a tree ?

(日) (四) (문) (문) (문)

SQC

1. Minimum Spanning Trees

Definition 1

Tree is a connected (path between any two nodes exists), undirected graph without cycles.

How to find possible cycles and verify whether a graph is a tree ?

SQC

Computational Problem:

Given a connected dag G = (V, E) and a weight function $c: E \to \mathbf{N}$. Find a tree (V, T) that connects all nodes such that $\sum_{e \in E} c(v) \to min$.

(日) (문) (문) (문) (문)

Definition 2 A set $C \subset E$ is a *cut* if G = (V, E - C) is not connected. For $S \subset V$, $\{\{u, v\} | u \in S \land v \in V - S\}$ forms a cut.

Computational Problem:

Given a connected dag G = (V, E) and a weight function $c: E \to \mathbf{N}$. Find a tree (V, T) that connects all nodes such that $\sum_{e \in E} c(v) \to min$.

Definition 2 A set $C \subset E$ is a *cut* if G = (V, E - C) is not connected. For $S \subset V$, $\{\{u, v\} | u \in S \land v \in V - S\}$ forms a cut.

Theorem 3 A lightest edge in a cut can be used in an MST.

Proof. Suppose MST T' uses edge e' between S and V - S and $c(e) \leq c(e')$. Then $T = T' - \{e'\} \cup \{e\}$ is also an MST.

(日) (四) (문) (문) (문)

Theorem 3 A lightest edge in a cut can be used in an MST.

Proof.

Suppose MST T' uses edge e' between S and V-S and $c(e) \leq c(e').$ Then $T=T'-\{e'\}\cup\{e\}$ is also an MST.

(日) (四) (포) (포) (포)

Theorem 4

A heaviest edge on a cycle is not needed for an MST.

Proof.

Suppose MST T' uses heaviest edge e' on cycle C and $c(e) \leq c(e')$. Then $T = T' - \{e'\} \cup \{e\}$ is also an MST.

(日) (四) (포) (포) (포)

- Input: A connected weighted graph G = (V, E)
- Initialize: $V_{new} = \{x\}$, where x is an arbitrary node, $E_{new} = \{\}$
- Repeat until $V_{new} = V$:
 - Choose edge $\{u,v\}$ from E with minimal weight such that $u \in V_{new}$ and v not.

◆□ > → ● > → ● > → ● > →

590

- E

- Add v to V_{new} and $\{u, v\}$ to E_{new}
- Output: V_{new} , E_{new}

- Input: A connected weighted graph G = (V, E)
- Initialize: $V_{new} = \{x\}$, where x is an arbitrary node, $E_{new} = \{\}$
- Repeat until $V_{new} = V$:
 - Choose edge $\{u,v\}$ from E with minimal weight such that $u \in V_{new}$ and v not.

(日) (四) (포) (포) (포)

- Add v to V_{new} and $\{u, v\}$ to E_{new}
- Output: V_{new} , E_{new}

- Input: A connected weighted graph G = (V, E)
- Initialize: $V_{new} = \{x\}$, where x is an arbitrary node, $E_{new} = \{\}$
- Repeat until $V_{new} = V$:
 - Choose edge $\{u,v\}$ from E with minimal weight such that $u \in V_{new}$ and v not.

(日) (四) (문) (문) (문)

- Add v to V_{new} and $\{u, v\}$ to E_{new}
- Output: V_{new}, E_{new}

- Input: A connected weighted graph G = (V, E)
- Initialize: $V_{new} = \{x\}$, where x is an arbitrary node, $E_{new} = \{\}$
- Repeat until $V_{new} = V$:
 - Choose edge $\{u,v\}$ from E with minimal weight such that $u \in V_{new}$ and v not.

(日) (四) (문) (문) (문)

• Add v to V_{new} and $\{u, v\}$ to E_{new}

• Output: V_{new} , E_{new}

- Input: A connected weighted graph G = (V, E)
- Initialize: $V_{new} = \{x\}$, where x is an arbitrary node, $E_{new} = \{\}$
- Repeat until $V_{new} = V$:
 - Choose edge $\{u,v\}$ from E with minimal weight such that $u \in V_{new}$ and v not.

(日) (四) (문) (문) (문)

• Add v to V_{new} and $\{u,v\}$ to E_{new}

Output: V_{new}, E_{new}.

- Input: A connected weighted graph G = (V, E)
- Initialize: $V_{new} = \{x\}$, where x is an arbitrary node, $E_{new} = \{\}$
- Repeat until $V_{new} = V$:
 - Choose edge $\{u,v\}$ from E with minimal weight such that $u \in V_{new}$ and v not.

(日) (四) (문) (문) (문)

- Add v to V_{new} and $\{u,v\}$ to E_{new}
- Output: V_{new} , E_{new} .

What is about complexity of this algorithm ? Obviously, the

complexity depends on the way how the graph is stored.

- adjacency matrix: $O(|V|^2)$
- using *Priority Queues* based on Fibonacci-Heaps: O(|E| + |V|log(|V|))

(日) (四) (문) (문) (문)

What is about complexity of this algorithm ? Obviously, the complexity depends on the way how the graph is stored.

- adjacency matrix: $O(|V|^2)$
- using *Priority Queues* based on Fibonacci-Heaps: O(|E| + |V|log(|V|))

What is about complexity of this algorithm ? Obviously, the complexity depends on the way how the graph is stored.

• adjacency matrix: $O(|V|^2)$

• using *Priority Queues* based on Fibonacci-Heaps: O(|E| + |V|log(|V|))

(日) (월) (일) (문) (문)

What is about complexity of this algorithm ? Obviously, the complexity depends on the way how the graph is stored.

- adjacency matrix: $O(|V|^2)$
- using *Priority Queues* based on Fibonacci-Heaps: O(|E| + |V|log(|V|))

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

1.2 Prim algorithm using Priority Queues

Priority Queue is a data structure supporting the following operations:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- insert_element O(log(|E| + |V|))
- delete_min O(|E|log(|E| + |V|))
- decrease_key O(|E|log(|E| + |V|))