
WS 2007/2008

Fundamental Algorithms

Dmytro Chibisov, Jens Ernst

Fakultät für Informatik

TU München

http://www14.in.tum.de/lehre/2007WS/fa-cse/

Fall Semester 2007



1. Depth First Search

1.1 Application of Depth First Search: topological sorting

Finished last week !

1.2 Application of Depth First Search: determining
biconnected components

Definition 1
Let G = (V, E) be a connected undirected graph. A vertex a is
said to be an articulation point of G if there exist vertices v and
w, and every path between v and w contains the vertex a.

Stated another way, a is an articulation point of G if removing a

splits G into two or more parts.

Definition 2
The graph G = (V, E) is called biconnected if for every distinct
triple of vertices v, w, and a there exist a path between v and w

not containing a.



Example 3

Consider G = (V, E) such that

V = (v1, v2, v3, v4, v5, v6, v7, v8, v9)

and

E = ({v1, v2}, {v1, v3}, {v2, v3}, {v2, v5}, {v4, v5},
{v4, v6}, {v6, v9}, {v6, v8}, {v6, v7}, {v7, v8}, {v8, v9})

Articulation nodes: v2, v4, v6. Biconnected components:
E1 = ({v4, v6}), V1 = (v4, v6); V2 = (v1, v2, v3),
E2 = ({v1, v2}, {v1, v3}, {v2, v3}); V3 = (v2, v4, v5),
E3 = ({v2, v4}, {v2, v5}, {v4, v5}); V4 = (v6, v7, v8, v9)
E4 = ({v6, v7}, {v6, v8}, {v6, v9}, {v9, v8}, {v7, v8}).



Example 4

Consider the electric power net suppling a city. The failure at the
articulation point of the net leads to power blackout of some parts
of the city. To locate the crash - find the articulated vertices of the
power net graph. To design the safe power supply - check the
biconnectivity of the power net graph.



Theorem 5
If {u, v} is a back edge, then in the DFS forest u is an ancestor of
v or vice versa.

Proof.
Easy. Homework.



Theorem 6
Vertex a is an articulation point of G if and only if either

(1) a is the root and a has more than one son, or

(2) a is not the root, and for some son s of a there is no back
edge between any descendant of s (including s itself) and an
ancestor of a

Proof

First, show that a root is an articulation point iff a has more than
one son.

Easy. Homework.

(2) is true ⇒ a (not the root) is an articulation point

Let f be a father of a. According to Theorem 1 any back edge
from a descendant v of s goes to the ancestor of v. By (2) the
back edge can not go to the ancestor of a. Thus, every path
from s to f contains a implying that a is an articulation point.



Proof (Cont.)

a (not the root) is an articulation point ⇒ (2) is true

Let x, y be distinct vertices other than a. x or y (or both) is a
descendant of a (otherwise the path between x and y avoiding
a would exist, and a would not be an articulation point). Two
cases are possible (try to present them graphically !):

1 Without loss of generality let x be a descendant of a and y

not. If in contradiction to (2) a back edge goes to the
descendant of a, then this edge allows the way from x to y

avoiding a. Contradiction to the hypothesis that a is an
articulation point.

2 Let x and y be descendants of a. Let x be a descendant of s

(perhaps x = s). Surely, y is not the descendant of s

(otherwise the path avoiding a would exist). Let s̃ be the son
of a such that y is the descendant of s̃. The existence of a
back edge from some descendant of s̃ would allow the path
avoiding a. Contradiction to the hypothesis that a is an
articulation point.





Exercise 1
Homework: Modify the DFS algorithm to check the biconnectivity
of a given graph. Hint: use Theorem 6 to check the existence of
back edges.



Iterative version of the DFS algorithm: Consider the data structure
called stack. The following operations have to be supported:

void push(int) – insert the element into the stack

in pop() – delete the element into the stack

Properties:

LIFO (Last Input First Output)

The elements are inserted in the same order push is called

The element deleted from the stack using pop is the one most
recently inserted



DepthFirstSearch:

void DepthFirstSearch(vertex v){
initialize the empty stack; // global variable
foreach (v ∈ V ) do v.dfsnum := 0; od
while ∃v0 ∈ V : v0.dfsnum = 0 do DFS(v0) od
od }

DFS:
void DFS(vertex v){

push(v);
while (stack not empty) do

v:= pop();
if (v.dfsnum = 0) then

v.dfsnum:=counter++;
foreach (w|(v, w) ∈ E ({v, w} ∈ E) ) do

push(w);
od

fi
od }



DepthFirstSearch:

void DepthFirstSearch(vertex v){
initialize the empty stack; // global variable
foreach (v ∈ V ) do v.dfsnum := 0; od
while ∃v0 ∈ V : v0.dfsnum = 0 do DFS(v0) od
od }

DFS:
void DFS(vertex v){

push(v);
while (stack not empty) do

v:= pop();
if (v.dfsnum = 0) then

v.dfsnum:=counter++;
foreach (w|(v, w) ∈ E ({v, w} ∈ E) ) do

push(w);
od

fi
od }



2. Breadth first search (BFS)

Consider the data structure called queue. The following operations
have to be supported:

void enqueue(int) – insert the element into the stack

int dequeue() – delete the element into the stack

Properties:

FIFO (First Input First Output)

The elements are inserted in the same order enqueue is called

The element deleted from the stack using dequeue is the first
inserted



BreadthFirstSearch:
void BreadthFirstSearch(vertex v){

initialize the empty stack; // global variable
foreach (v ∈ V ) do v.bfsnum := 0; od
while ∃v0 ∈ V : v0.bfsnum = 0 do DFS(v0) od
od }

BFS:
void BFS(vertex v){

enqueue(v);
while (stack not empty) do

v:= dequeue();
if (v.bfsnum = 0) then

foreach (w|(v, w) ∈ E ({v, w} ∈ E) ) do
enqueue(w);
w.bfsnum = v.bfsnum + 1

od
fi

od }



BreadthFirstSearch:
void BreadthFirstSearch(vertex v){

initialize the empty stack; // global variable
foreach (v ∈ V ) do v.bfsnum := 0; od
while ∃v0 ∈ V : v0.bfsnum = 0 do DFS(v0) od
od }

BFS:
void BFS(vertex v){

enqueue(v);
while (stack not empty) do

v:= dequeue();
if (v.bfsnum = 0) then

foreach (w|(v, w) ∈ E ({v, w} ∈ E) ) do
enqueue(w);
w.bfsnum = v.bfsnum + 1

od
fi

od }



Recall the classification of edges introduced last week:

Tree edges – edge (u, v) is a tree edge if v was first
discovered by exploring edge (u, v) (v.dfsnum = 0).

Back edges – edge (u, v) connecting a vertex u to an
ancestor v in a depth-first tree (v.dfsnum < u.dfsnum, and
DFS(v) is not finished).

Forward edges – non-tree edges (u, v) connecting a vertex u

to a descendant v in a depth-first tree
(v.dfsnum > u.dfsnum).

Cross edges – are all other edges (u.dfsnum > v.dfsnum,
and DFS(v) is finished).



Lemma 7
In a breads first search of an undirected graph G, every edge of G

is either a tree edge, or a cross edge. Furthermore:

for each tree edge (u, v): v.bfsnum = u.bfsnum + 1

for each cross edge (u, v): v.bfsnum = u.bfsnum + 1 or
v.bfsnum = u.bfsnum



Lemma 8
In a breads first search of a directed graph G, every edge of G is
either a tree edge, or a cross edge, or back edge. Furthermore:

for each tree edge (u, v): v.bfsnum = u.bfsnum + 1

for each cross edge (u, v): v.bfsnum ≤ u.bfsnum + 1

for each back edge (u, v): 0 ≤ v.bfsnum < u.bfsnum


	Depth First Search
	Application of Depth First Search: topological sorting
	Application of Depth First Search: determining biconnected components

	Breadth first search (BFS)

