WS 2007,/2008

Fundamental Algorithms

Dmytro Chibisov, Jens Ernst

Fakultat fiir Informatik
TU Miinchen

http://wwwlé.in.tum.de/lehre/2007WS/fa-cse/

Fall Semester 2007



1. Depth First Search

1.1 Application of Depth First Search: topological sorting
Finished last week !

1.2 Application of Depth First Search: determining
biconnected components

Definition 1

Let G = (V, E) be a connected undirected graph. A vertex a is
said to be an articulation point of G if there exist vertices v and
w, and every path between v and w contains the vertex a.

Stated another way, a is an articulation point of G if removing a
splits G into two or more parts.

Definition 2

The graph G = (V, E) is called biconnected if for every distinct
triple of vertices v, w, and a there exist a path between v and w
not containing a.



Example 3
Consider G = (V, E) such that

V = (v1,v2,v3,v4, Vs, Vs, U7, U3, V9)

and

E= ({Ul’ U2}a {Ulv U3}> {U27 U3}7 {U27 U5}7 {U47 '05}7
{va,v6}, {ve, vo}, {ve, vs}, {ve, v7}, {vr, vs}, {vs, vo})

Articulation nodes: vg, v4, vg. Biconnected components:
E1 = ({va,v6}), Vi = (v4,06); Vo = (v1,v2,v3),

Ey = ({v1,v2}, {v1,v3}, {v2,v3}); V3 = (v2,v4,05),

E3 = ({v2,v4}, {v2,v5}, {va,v5}); Vi = (ve,v7,v8,v9)
Ey = ({vs,v7}, {ve, vs}, {ve, v}, {vg,vs}, {v7,vs}).



Example 4

Consider the electric power net suppling a city. The failure at the
articulation point of the net leads to power blackout of some parts
of the city. To locate the crash - find the articulated vertices of the
power net graph. To design the safe power supply - check the
biconnectivity of the power net graph.



Theorem 5

If {u,v} is a back edge, then in the DFS forest u is an ancestor of
v or vice versa.

Proof.
Easy. Homework. O



Theorem 6
Vertex a is an articulation point of G if and only if either
(1) a is the root and a has more than one son, or

(2) a is not the root, and for some son s of a there is no back

edge between any descendant of s (including s itself) and an
ancestor of a

Proof

@ First, show that a root is an articulation point iff @ has more than
one son.

¢ Easy. Homework.
® (2) is true = a (not the root) is an articulation point

@ Let f be a father of a. According to Theorem 1 any back edge
from a descendant v of s goes to the ancestor of v. By (2) the
back edge can not go to the ancestor of a. Thus, every path
from s to f contains a implying that a is an articulation point.



Proof (Cont.)

@ a (not the

o Letx
desce

root) is an articulation point = (2) is true

, y be distinct vertices other than a. = or y (or both) is a
ndant of a (otherwise the path between x and y avoiding

a would exist, and a would not be an articulation point). Two

cases
1

are possible (try to present them graphically !):

Without loss of generality let x be a descendant of a and y
not. If in contradiction to (2) a back edge goes to the
descendant of a, then this edge allows the way from x to y
avoiding a. Contradiction to the hypothesis that a is an
articulation point.

Let x and y be descendants of a. Let x be a descendant of s
(perhaps x = s). Surely, y is not the descendant of s
(otherwise the path avoiding a would exist). Let § be the son
of a such that y is the descendant of 5. The existence of a
back edge from some descendant of 5 would allow the path
avoiding a. Contradiction to the hypothesis that a is an
articulation point.



<

o

«F >

Q¥



Exercise 1
Homework: Modify the DFS algorithm to check the biconnectivity
of a given graph. Hint: use Theorem 6 to check the existence of

back edges.



Iterative version of the DFS algorithm: Consider the data structure
called stack. The following operations have to be supported:

@ void push(int) — insert the element into the stack
@ in pop() — delete the element into the stack
Properties:
@ LIFO (Last Input First Output)
@ The elements are inserted in the same order push is called

@ The element deleted from the stack using pop is the one most
recently inserted



DepthFirstSearch:

void DepthFirstSearch(vertex v){
initialize the empty stack; // global variable
foreach (v € V') do v.df snum := 0; od
while Jvg € V' : vg.df snum = 0 do DFS(vg) od
od }



DepthFirstSearch:

void DepthFirstSearch(vertex v){
initialize the empty stack; // global variable
foreach (v € V') do v.df snum := 0; od
while Jvg € V' : vg.df snum = 0 do DFS(vg) od
od }

DFS:
void DFS(vertex v){
push(v);
while (stack not empty) do
v:= pop();
if (v.dfsnum = 0) then
v.df snum:=counter+-;
foreach (w|(v,w) € E ({v,w} € E) ) do
push(w);
od
fi
od }



2. Breadth first search (BFS)
Consider the data structure called queue. The following operations
have to be supported:
@ void enqueue(int) — insert the element into the stack
@ int dequeue() — delete the element into the stack
Properties:
@ FIFO (First Input First Output)
@ The elements are inserted in the same order enqueue is called

@ The element deleted from the stack using dequeue is the first
inserted



BreadthFirstSearch:

void BreadthFirstSearch(vertex v){
initialize the empty stack; // global variable
foreach (v € V') do v.bfsnum := 0; od
while Jvy € V' : vg.bfsnum = 0 do DFS(vp) od

od }



BreadthFirstSearch:

void BreadthFirstSearch(vertex v){
initialize the empty stack; // global variable
foreach (v € V') do v.bfsnum := 0; od
while Jvy € V' : vg.bfsnum = 0 do DFS(vp) od

od }

BFS:
void BFS(vertex v){
enqueue(v);
while (stack not empty) do
v:= dequeue();
if (v.bfsnum = 0) then
foreach (w|(v,w) € E ({v,w} € E) ) do
enqueue(w);
w.bfsnum = v.bfsnum + 1
od
fi
od }



Recall the classification of edges introduced last week:

o Tree edges — edge (u,v) is a tree edge if v was first
discovered by exploring edge (u,v) (v.df snum = 0).
@ Back edges — edge (u,v) connecting a vertex u to an

ancestor v in a depth-first tree (v.df snum < u.df snum, and
DFS(v) is not finished).

o Forward edges — non-tree edges (u,v) connecting a vertex u
to a descendant v in a depth-first tree
(v.df snum > u.df snum).

o Cross edges — are all other edges (u.df snum > v.df snum,
and DFS(v) is finished).



Lemma 7
In a breads first search of an undirected graph G, every edge of G
is either a tree edge, or a cross edge. Furthermore:

@ for each tree edge (u,v): v.bfsnum = u.bfsnum + 1

@ for each cross edge (u,v): v.bfsnum = u.bfsnum + 1 or
v.bfsnum = u.bfsnum



Lemma 8
In a breads first search of a directed graph G, every edge of G is
either a tree edge, or a cross edge, or back edge. Furthermore:

@ for each tree edge (u,v): v.bfsnum = u.bfsnum + 1
@ for each cross edge (u,v): v.bfsnum < u.bfsnum + 1

@ for each back edge (u,v): 0 < v.bfsnum < u.bfsnum



	Depth First Search
	Application of Depth First Search: topological sorting
	Application of Depth First Search: determining biconnected components

	Breadth first search (BFS)

