
WS 2007/2008

Fundamental Algorithms

Dmytro Chibisov, Jens Ernst

Fakultät für Informatik

TU München

http://www14.in.tum.de/lehre/2007WS/fa-cse/

Fall Semester 2007



Chapter 0 Administrative Issues

Lectures:

2 Hours/Week
Times/Place: Tuesday, 11:30-13:00, room MI 00.08.038

Tutorials:

2 Hours/Week
http://wwwmayr.informatik.tu-muenchen.de/lehre/2007WS/fa-cse/tutorial.html

Proposal for Times/Plase : Wednesday, 11:00-12:30, room MI
03.11.018

Office Hours:

By Appointment (chibisov@in.tum.de)

Written examination

http://wwwmayr.informatik.tu-muenchen.de/lehre/2007WS/fa-cse/tutorial.html


Chapter 0 Administrative Issues

Lectures:

2 Hours/Week
Times/Place: Tuesday, 11:30-13:00, room MI 00.08.038

Tutorials:

2 Hours/Week
http://wwwmayr.informatik.tu-muenchen.de/lehre/2007WS/fa-cse/tutorial.html

Proposal for Times/Plase : Wednesday, 11:00-12:30, room MI
03.11.018

Office Hours:

By Appointment (chibisov@in.tum.de)

Written examination

http://wwwmayr.informatik.tu-muenchen.de/lehre/2007WS/fa-cse/tutorial.html


Chapter 0 Administrative Issues

Lectures:

2 Hours/Week
Times/Place: Tuesday, 11:30-13:00, room MI 00.08.038

Tutorials:

2 Hours/Week
http://wwwmayr.informatik.tu-muenchen.de/lehre/2007WS/fa-cse/tutorial.html

Proposal for Times/Plase : Wednesday, 11:00-12:30, room MI
03.11.018

Office Hours:

By Appointment (chibisov@in.tum.de)

Written examination

http://wwwmayr.informatik.tu-muenchen.de/lehre/2007WS/fa-cse/tutorial.html


Chapter 0 Administrative Issues

Lectures:

2 Hours/Week
Times/Place: Tuesday, 11:30-13:00, room MI 00.08.038

Tutorials:

2 Hours/Week
http://wwwmayr.informatik.tu-muenchen.de/lehre/2007WS/fa-cse/tutorial.html

Proposal for Times/Plase : Wednesday, 11:00-12:30, room MI
03.11.018

Office Hours:

By Appointment (chibisov@in.tum.de)

Written examination

http://wwwmayr.informatik.tu-muenchen.de/lehre/2007WS/fa-cse/tutorial.html


Chapter 0 Administrative Issues

Lectures:

2 Hours/Week
Times/Place: Tuesday, 11:30-13:00, room MI 00.08.038

Tutorials:

2 Hours/Week
http://wwwmayr.informatik.tu-muenchen.de/lehre/2007WS/fa-cse/tutorial.html

Proposal for Times/Plase : Wednesday, 11:00-12:30, room MI
03.11.018

Office Hours:

By Appointment (chibisov@in.tum.de)

Written examination

http://wwwmayr.informatik.tu-muenchen.de/lehre/2007WS/fa-cse/tutorial.html


1. Goals of this Course

In this course you should learn to formalize and model algorithmic
problems in such a way that they become accessible to techniques
based on such things as graphs strings, algebraic objects, etc. We
will be studying standard approaches to problems formulated within
these models. Each algorithm will be derived and analyzed in terms
of their time and space complexity. At the end of this course you
should understand the underlying algorithmic methodologies and,
ideally, be able to adapt the algorithms shown here to problems
related, but not identical, to those shown in this class.



Introduction to algorithmics terminolgy

Formalization of algorithmic problems

Fundamental methodologies of algorithm design

Algorithms for standard problems

Basic methods of algorithm analysis

Primitive and higher data structures

Tutorials covering all this



Introduction to algorithmics terminolgy

Formalization of algorithmic problems

Fundamental methodologies of algorithm design

Algorithms for standard problems

Basic methods of algorithm analysis

Primitive and higher data structures

Tutorials covering all this



Introduction to algorithmics terminolgy

Formalization of algorithmic problems

Fundamental methodologies of algorithm design

Algorithms for standard problems

Basic methods of algorithm analysis

Primitive and higher data structures

Tutorials covering all this



Introduction to algorithmics terminolgy

Formalization of algorithmic problems

Fundamental methodologies of algorithm design

Algorithms for standard problems

Basic methods of algorithm analysis

Primitive and higher data structures

Tutorials covering all this



Introduction to algorithmics terminolgy

Formalization of algorithmic problems

Fundamental methodologies of algorithm design

Algorithms for standard problems

Basic methods of algorithm analysis

Primitive and higher data structures

Tutorials covering all this



Introduction to algorithmics terminolgy

Formalization of algorithmic problems

Fundamental methodologies of algorithm design

Algorithms for standard problems

Basic methods of algorithm analysis

Primitive and higher data structures

Tutorials covering all this



Introduction to algorithmics terminolgy

Formalization of algorithmic problems

Fundamental methodologies of algorithm design

Algorithms for standard problems

Basic methods of algorithm analysis

Primitive and higher data structures

Tutorials covering all this



2. Contents

Introduction, Basics, Notation

Deriving Algorithms by Induction

Sorting and Searching

Data Structures

Algorithms on Graphs

Algorithms on Texts

Algebraic and Numerical Problems



2. Contents

Introduction, Basics, Notation

Deriving Algorithms by Induction

Sorting and Searching

Data Structures

Algorithms on Graphs

Algorithms on Texts

Algebraic and Numerical Problems



2. Contents

Introduction, Basics, Notation

Deriving Algorithms by Induction

Sorting and Searching

Data Structures

Algorithms on Graphs

Algorithms on Texts

Algebraic and Numerical Problems



2. Contents

Introduction, Basics, Notation

Deriving Algorithms by Induction

Sorting and Searching

Data Structures

Algorithms on Graphs

Algorithms on Texts

Algebraic and Numerical Problems



2. Contents

Introduction, Basics, Notation

Deriving Algorithms by Induction

Sorting and Searching

Data Structures

Algorithms on Graphs

Algorithms on Texts

Algebraic and Numerical Problems



2. Contents

Introduction, Basics, Notation

Deriving Algorithms by Induction

Sorting and Searching

Data Structures

Algorithms on Graphs

Algorithms on Texts

Algebraic and Numerical Problems



2. Contents

Introduction, Basics, Notation

Deriving Algorithms by Induction

Sorting and Searching

Data Structures

Algorithms on Graphs

Algorithms on Texts

Algebraic and Numerical Problems



2. Contents

Introduction, Basics, Notation

Deriving Algorithms by Induction

Sorting and Searching

Data Structures

Algorithms on Graphs

Algorithms on Texts

Algebraic and Numerical Problems



3. Literature

Robert Sedgewick
Algorithms in C, Parts 1-4: Fundamentals, Data Structures,
Sorting, Searching (3rd Edition).
Addison-Wesley Publishing Company, Reading (MA), 1990

T.H. Cormen, C.E. Leiserson, and R.L. Rivest.
Introduction to Algorithms.
MIT Press, McGraw-Hill Book Company, 1990

Donald E. Knuth.
Art of Computer Programming, Volume 1: Fundamental
Algorithms.
Addison-Wesley Publishing Company, Reading (MA), 1973



Chapter I Motivation

1. Introduction

Definition 1
An Algorithm is an unambiguously secified method for obtaining
some desired output, given some input. Here we consider
algorithms satisfying the following special properties:

sequential: At any point during the execution, exactly one
operation is carried out.

deterministic: At any point during the execution, the
subsequent step is uniquely defined.

statically finite: The description of the algorithm requires only
a finite amount of space.

dynamically finite: At any point during the execution, only a
finite amount of storage is occupied.

termination: The execution is guaranteed to end after a finite
number of steps.



Chapter I Motivation

1. Introduction

Definition 1
An Algorithm is an unambiguously secified method for obtaining
some desired output, given some input. Here we consider
algorithms satisfying the following special properties:

sequential: At any point during the execution, exactly one
operation is carried out.

deterministic: At any point during the execution, the
subsequent step is uniquely defined.

statically finite: The description of the algorithm requires only
a finite amount of space.

dynamically finite: At any point during the execution, only a
finite amount of storage is occupied.

termination: The execution is guaranteed to end after a finite
number of steps.



Chapter I Motivation

1. Introduction

Definition 1
An Algorithm is an unambiguously secified method for obtaining
some desired output, given some input. Here we consider
algorithms satisfying the following special properties:

sequential: At any point during the execution, exactly one
operation is carried out.

deterministic: At any point during the execution, the
subsequent step is uniquely defined.

statically finite: The description of the algorithm requires only
a finite amount of space.

dynamically finite: At any point during the execution, only a
finite amount of storage is occupied.

termination: The execution is guaranteed to end after a finite
number of steps.



Chapter I Motivation

1. Introduction

Definition 1
An Algorithm is an unambiguously secified method for obtaining
some desired output, given some input. Here we consider
algorithms satisfying the following special properties:

sequential: At any point during the execution, exactly one
operation is carried out.

deterministic: At any point during the execution, the
subsequent step is uniquely defined.

statically finite: The description of the algorithm requires only
a finite amount of space.

dynamically finite: At any point during the execution, only a
finite amount of storage is occupied.

termination: The execution is guaranteed to end after a finite
number of steps.



Chapter I Motivation

1. Introduction

Definition 1
An Algorithm is an unambiguously secified method for obtaining
some desired output, given some input. Here we consider
algorithms satisfying the following special properties:

sequential: At any point during the execution, exactly one
operation is carried out.

deterministic: At any point during the execution, the
subsequent step is uniquely defined.

statically finite: The description of the algorithm requires only
a finite amount of space.

dynamically finite: At any point during the execution, only a
finite amount of storage is occupied.

termination: The execution is guaranteed to end after a finite
number of steps.



Chapter I Motivation

1. Introduction

Definition 1
An Algorithm is an unambiguously secified method for obtaining
some desired output, given some input. Here we consider
algorithms satisfying the following special properties:

sequential: At any point during the execution, exactly one
operation is carried out.

deterministic: At any point during the execution, the
subsequent step is uniquely defined.

statically finite: The description of the algorithm requires only
a finite amount of space.

dynamically finite: At any point during the execution, only a
finite amount of storage is occupied.

termination: The execution is guaranteed to end after a finite
number of steps.



Example 2

Examples of real-life problems requiring elaborate, efficient
algorithms:

Data organization and efficient lookup in a web search engine

Data management in a large customer database

Weather forecast by simulation of fluid flows

Assembly of the human genome from hundreds of thousands
of sequenced fragments

Computation of a VLSI layout

Compression of an audio or video file

Encryption and decrytion of secret information for
transmission over the internet

etc.



Example 2

Examples of real-life problems requiring elaborate, efficient
algorithms:

Data organization and efficient lookup in a web search engine

Data management in a large customer database

Weather forecast by simulation of fluid flows

Assembly of the human genome from hundreds of thousands
of sequenced fragments

Computation of a VLSI layout

Compression of an audio or video file

Encryption and decrytion of secret information for
transmission over the internet

etc.



Example 2

Examples of real-life problems requiring elaborate, efficient
algorithms:

Data organization and efficient lookup in a web search engine

Data management in a large customer database

Weather forecast by simulation of fluid flows

Assembly of the human genome from hundreds of thousands
of sequenced fragments

Computation of a VLSI layout

Compression of an audio or video file

Encryption and decrytion of secret information for
transmission over the internet

etc.



Example 2

Examples of real-life problems requiring elaborate, efficient
algorithms:

Data organization and efficient lookup in a web search engine

Data management in a large customer database

Weather forecast by simulation of fluid flows

Assembly of the human genome from hundreds of thousands
of sequenced fragments

Computation of a VLSI layout

Compression of an audio or video file

Encryption and decrytion of secret information for
transmission over the internet

etc.



Example 2

Examples of real-life problems requiring elaborate, efficient
algorithms:

Data organization and efficient lookup in a web search engine

Data management in a large customer database

Weather forecast by simulation of fluid flows

Assembly of the human genome from hundreds of thousands
of sequenced fragments

Computation of a VLSI layout

Compression of an audio or video file

Encryption and decrytion of secret information for
transmission over the internet

etc.



Example 2

Examples of real-life problems requiring elaborate, efficient
algorithms:

Data organization and efficient lookup in a web search engine

Data management in a large customer database

Weather forecast by simulation of fluid flows

Assembly of the human genome from hundreds of thousands
of sequenced fragments

Computation of a VLSI layout

Compression of an audio or video file

Encryption and decrytion of secret information for
transmission over the internet

etc.



Example 2

Examples of real-life problems requiring elaborate, efficient
algorithms:

Data organization and efficient lookup in a web search engine

Data management in a large customer database

Weather forecast by simulation of fluid flows

Assembly of the human genome from hundreds of thousands
of sequenced fragments

Computation of a VLSI layout

Compression of an audio or video file

Encryption and decrytion of secret information for
transmission over the internet

etc.



Example 2

Examples of real-life problems requiring elaborate, efficient
algorithms:

Data organization and efficient lookup in a web search engine

Data management in a large customer database

Weather forecast by simulation of fluid flows

Assembly of the human genome from hundreds of thousands
of sequenced fragments

Computation of a VLSI layout

Compression of an audio or video file

Encryption and decrytion of secret information for
transmission over the internet

etc.



Example 2

Examples of real-life problems requiring elaborate, efficient
algorithms:

Data organization and efficient lookup in a web search engine

Data management in a large customer database

Weather forecast by simulation of fluid flows

Assembly of the human genome from hundreds of thousands
of sequenced fragments

Computation of a VLSI layout

Compression of an audio or video file

Encryption and decrytion of secret information for
transmission over the internet

etc.



2. Algorithms and Efficiency

The efficiency of an algorithm is mostly measured in terms of the
running time and the usage of (storage) space during its execution.
Both are typically specified as functions of the input size (in bits).
Mostly, the running time is specified as the number of operations
executed (e.g. additions, comparisons).



Example 3

Suppose that a given machine takes 1µs per operation. Let us
consider different algorithms of varying time complexity for the
same problem. We show the runnning time T (n) (in seconds,
hours, etc.) for different input sizes n and for different algorithms
whose time complexities are

t(n) = 1000n (A1)

t(n) = 1000n log n (A2)

t(n) = n2 (A3)

t(n) = 10n3 (A4)

t(n) = 2n (A5).



Example 3

Suppose that a given machine takes 1µs per operation. Let us
consider different algorithms of varying time complexity for the
same problem. We show the runnning time T (n) (in seconds,
hours, etc.) for different input sizes n and for different algorithms
whose time complexities are

t(n) = 1000n (A1)

t(n) = 1000n log n (A2)

t(n) = n2 (A3)

t(n) = 10n3 (A4)

t(n) = 2n (A5).



Example 3

Suppose that a given machine takes 1µs per operation. Let us
consider different algorithms of varying time complexity for the
same problem. We show the runnning time T (n) (in seconds,
hours, etc.) for different input sizes n and for different algorithms
whose time complexities are

t(n) = 1000n (A1)

t(n) = 1000n log n (A2)

t(n) = n2 (A3)

t(n) = 10n3 (A4)

t(n) = 2n (A5).



Example 3

Suppose that a given machine takes 1µs per operation. Let us
consider different algorithms of varying time complexity for the
same problem. We show the runnning time T (n) (in seconds,
hours, etc.) for different input sizes n and for different algorithms
whose time complexities are

t(n) = 1000n (A1)

t(n) = 1000n log n (A2)

t(n) = n2 (A3)

t(n) = 10n3 (A4)

t(n) = 2n (A5).



Example 3

Suppose that a given machine takes 1µs per operation. Let us
consider different algorithms of varying time complexity for the
same problem. We show the runnning time T (n) (in seconds,
hours, etc.) for different input sizes n and for different algorithms
whose time complexities are

t(n) = 1000n (A1)

t(n) = 1000n log n (A2)

t(n) = n2 (A3)

t(n) = 10n3 (A4)

t(n) = 2n (A5).



Example 3

Suppose that a given machine takes 1µs per operation. Let us
consider different algorithms of varying time complexity for the
same problem. We show the runnning time T (n) (in seconds,
hours, etc.) for different input sizes n and for different algorithms
whose time complexities are

t(n) = 1000n (A1)

t(n) = 1000n log n (A2)

t(n) = n2 (A3)

t(n) = 10n3 (A4)

t(n) = 2n (A5).



20 50 100 200 500 1000 10000

A1 0.02s 0.05s 0.1s 0.2s 0.5s 1s 10s

A2 0.09s 0.3s 0.6s 1.5s 4.5s 10s 2min

A3 0.04s 0.25s 1s 4s 25s 2min 2.8h

A4 0.02s 1s 10s 1min 21min 2.7h 116d

A5 1s 35yrs 3 × 104cent.



Here is a plot of the running times (in µs) as a function of the
input size. Algorithms more efficient for some n coste more for
other n.



But in general these examples show us that, for sufficiently large
input sizes, the complexity of an algorithm determines whether or
not a given algorithm is usable in practice:



But in general these examples show us that, for sufficiently large
input sizes, the complexity of an algorithm determines whether or
not a given algorithm is usable in practice.

Some argue as follows:
”There is no need for efficient algorithms — If some computation
is too slow, I’ll buy a faster machine.”

Well, all that results from a faster machine is a different constant
factor in the running time. This, however, is typically dwarfed by
the effect of slightly increasing n if the time complexity is high.
Let us examine this phenomenon:



But in general these examples show us that, for sufficiently large
input sizes, the complexity of an algorithm determines whether or
not a given algorithm is usable in practice.

Some argue as follows:
”There is no need for efficient algorithms — If some computation
is too slow, I’ll buy a faster machine.”

Well, all that results from a faster machine is a different constant
factor in the running time. This, however, is typically dwarfed by
the effect of slightly increasing n if the time complexity is high.
Let us examine this phenomenon:



But in general these examples show us that, for sufficiently large
input sizes, the complexity of an algorithm determines whether or
not a given algorithm is usable in practice.

Some argue as follows:
”There is no need for efficient algorithms — If some computation
is too slow, I’ll buy a faster machine.”

Well, all that results from a faster machine is a different constant
factor in the running time. This, however, is typically dwarfed by
the effect of slightly increasing n if the time complexity is high.
Let us examine this phenomenon:



3. Maximum Feasible Input Size

Suppose we are using a machine that executes f operations per
second (in the example: f = 106). The algorithm requires t(n)
operations on inputs of size n (, where t(n) strictly grows in n).
The measured running time then is

T (n) =
t(n)

f
[in seconds]

If we need the computation to be finished within s seconds, the
input size is limited to

n ≤ t−1(s · f).



3. Maximum Feasible Input Size

Suppose we are using a machine that executes f operations per
second (in the example: f = 106). The algorithm requires t(n)
operations on inputs of size n (, where t(n) strictly grows in n).
The measured running time then is

T (n) =
t(n)

f
[in seconds]

If we need the computation to be finished within s seconds, the
input size is limited to

n ≤ t−1(s · f).



3. Maximum Feasible Input Size

Suppose we are using a machine that executes f operations per
second (in the example: f = 106). The algorithm requires t(n)
operations on inputs of size n (, where t(n) strictly grows in n).
The measured running time then is

T (n) =
t(n)

f
[in seconds]

If we need the computation to be finished within s seconds, the
input size is limited to

n ≤ t−1(s · f).



3. Maximum Feasible Input Size

Suppose we are using a machine that executes f operations per
second (in the example: f = 106). The algorithm requires t(n)
operations on inputs of size n (, where t(n) strictly grows in n).
The measured running time then is

T (n) =
t(n)

f
[in seconds]

If we need the computation to be finished within s seconds, the
input size is limited to

n ≤ t−1(s · f).



Example 4

Suppose the algorithm’s time complexity is t(n) = n2, and suppose
the maximum permissible running time is s. Increasing the
machine’s speed f by a factor of 2 (1000) allows us to increase the
input size n by only a factor of 1.414 (31.62).

Example 5

Suppose the algorithm’s time complexity is t(n) = 2n, and suppose
the maximum permissible running time is s. Increasing the
machine’s speed f by a factor of 2 (1000) allows us to increase the
input size n only by the additive constant 1 (⌊log 1000⌋ = 9).

Exercise 1
Suppose the algorithm’s time complexity is t(n) = 2log(n), and
suppose the maximum permissible running time is s. What
increasing of the input size n would be caused by increasing of the
machine’s speed f by a factor of 2 (1000) ?



Example 4

Suppose the algorithm’s time complexity is t(n) = n2, and suppose
the maximum permissible running time is s. Increasing the
machine’s speed f by a factor of 2 (1000) allows us to increase the
input size n by only a factor of 1.414 (31.62).

Example 5

Suppose the algorithm’s time complexity is t(n) = 2n, and suppose
the maximum permissible running time is s. Increasing the
machine’s speed f by a factor of 2 (1000) allows us to increase the
input size n only by the additive constant 1 (⌊log 1000⌋ = 9).

Exercise 1
Suppose the algorithm’s time complexity is t(n) = 2log(n), and
suppose the maximum permissible running time is s. What
increasing of the input size n would be caused by increasing of the
machine’s speed f by a factor of 2 (1000) ?



Chapter II Introduction, Basics and Notation

1. Introductory Example: The Fibonacci Numbers

Problem: How fast does a population of rabbits grow?
Suppose:

At the beginning of the first month, 1 pair of rabbits exists

After being born, a rabbit begins breeding at the age of 1
month

Each pair of rabbits produces one new pair (1 female, 1 male)
per month

Rabbits live infinitely long

We disregard the genetic effects of inbreeding



Chapter II Introduction, Basics and Notation

1. Introductory Example: The Fibonacci Numbers

Problem: How fast does a population of rabbits grow?
Suppose:

At the beginning of the first month, 1 pair of rabbits exists

After being born, a rabbit begins breeding at the age of 1
month

Each pair of rabbits produces one new pair (1 female, 1 male)
per month

Rabbits live infinitely long

We disregard the genetic effects of inbreeding



Chapter II Introduction, Basics and Notation

1. Introductory Example: The Fibonacci Numbers

Problem: How fast does a population of rabbits grow?
Suppose:

At the beginning of the first month, 1 pair of rabbits exists

After being born, a rabbit begins breeding at the age of 1
month

Each pair of rabbits produces one new pair (1 female, 1 male)
per month

Rabbits live infinitely long

We disregard the genetic effects of inbreeding



Chapter II Introduction, Basics and Notation

1. Introductory Example: The Fibonacci Numbers

Problem: How fast does a population of rabbits grow?
Suppose:

At the beginning of the first month, 1 pair of rabbits exists

After being born, a rabbit begins breeding at the age of 1
month

Each pair of rabbits produces one new pair (1 female, 1 male)
per month

Rabbits live infinitely long

We disregard the genetic effects of inbreeding



Chapter II Introduction, Basics and Notation

1. Introductory Example: The Fibonacci Numbers

Problem: How fast does a population of rabbits grow?
Suppose:

At the beginning of the first month, 1 pair of rabbits exists

After being born, a rabbit begins breeding at the age of 1
month

Each pair of rabbits produces one new pair (1 female, 1 male)
per month

Rabbits live infinitely long

We disregard the genetic effects of inbreeding



Chapter II Introduction, Basics and Notation

1. Introductory Example: The Fibonacci Numbers

Problem: How fast does a population of rabbits grow?
Suppose:

At the beginning of the first month, 1 pair of rabbits exists

After being born, a rabbit begins breeding at the age of 1
month

Each pair of rabbits produces one new pair (1 female, 1 male)
per month

Rabbits live infinitely long

We disregard the genetic effects of inbreeding



We can see from the above specification that:

In the n-th month there exist the rabbits that already existed
in the (n − 1)-th month, and

those who existed in the (n − 2)-th month were old enough to
breed. Hence the latter have produced offspring.

So the number fn of rabbits existing in the n-th month can be
described by the following recurrence relation:

f1 = 1
f2 = 1
fn = fn−1 + fn−2 for n ≥ 3

Definition 6
For n ≥ 1, the numbers fn defined above are known as Fibonacci
Numbers.



1.1 1st Algorithm for Computing Fibonacci Numbers

This algorithm is a straightforward implementation of the above
(where we denote f(n) := fn):

Algorithm:

unsigned f(unsigned n){
if (n ≤ 2) then return 1
else return f(n − 1) + f(n − 2)
fi

}

The recurrence relation leads to a simple recursive algorithm: a
function that repeatedly calls itself. Let us take a look at the
complexity of this algorithm.



1.1 1st Algorithm for Computing Fibonacci Numbers

This algorithm is a straightforward implementation of the above
(where we denote f(n) := fn):

Algorithm:

unsigned f(unsigned n){
if (n ≤ 2) then return 1
else return f(n − 1) + f(n − 2)
fi

}

The recurrence relation leads to a simple recursive algorithm: a
function that repeatedly calls itself. Let us take a look at the
complexity of this algorithm.



1.1 1st Algorithm for Computing Fibonacci Numbers

This algorithm is a straightforward implementation of the above
(where we denote f(n) := fn):

Algorithm:

unsigned f(unsigned n){
if (n ≤ 2) then return 1
else return f(n − 1) + f(n − 2)
fi

}

The recurrence relation leads to a simple recursive algorithm: a
function that repeatedly calls itself. Let us take a look at the
complexity of this algorithm.



We measure the complexity in terms of the number trek(n) of
arithmetic operations to be performed as a function of the value of
n (rather than the size ⌈log n⌉ of input n). Given an algorithm like
this, the complexity can easily be written down in a recursive way,
symetrically to the algorithm itself. It holds that

trek(1) = 0

trek(2) = 0

trek(n) = 3 + trek(n − 1) + trek(n − 2) for n ≥ 3.

The problem with this formulation is that we need to obtain an
explicit representation of trek(n) in a separate step.



We measure the complexity in terms of the number trek(n) of
arithmetic operations to be performed as a function of the value of
n (rather than the size ⌈log n⌉ of input n). Given an algorithm like
this, the complexity can easily be written down in a recursive way,
symetrically to the algorithm itself. It holds that

trek(1) = 0

trek(2) = 0

trek(n) = 3 + trek(n − 1) + trek(n − 2) for n ≥ 3.

The problem with this formulation is that we need to obtain an
explicit representation of trek(n) in a separate step.



We measure the complexity in terms of the number trek(n) of
arithmetic operations to be performed as a function of the value of
n (rather than the size ⌈log n⌉ of input n). Given an algorithm like
this, the complexity can easily be written down in a recursive way,
symetrically to the algorithm itself. It holds that

trek(1) = 0

trek(2) = 0

trek(n) = 3 + trek(n − 1) + trek(n − 2) for n ≥ 3.

The problem with this formulation is that we need to obtain an
explicit representation of trek(n) in a separate step.



We measure the complexity in terms of the number trek(n) of
arithmetic operations to be performed as a function of the value of
n (rather than the size ⌈log n⌉ of input n). Given an algorithm like
this, the complexity can easily be written down in a recursive way,
symetrically to the algorithm itself. It holds that

trek(1) = 0

trek(2) = 0

trek(n) = 3 + trek(n − 1) + trek(n − 2) for n ≥ 3.

The problem with this formulation is that we need to obtain an
explicit representation of trek(n) in a separate step.



Lemma 1
It holds that trek(n) = 3 · fn − 3 for n ≥ 1.

Proof.
The base case:

trek(1) = 0,

trek(2) = 0.

Assume the statement holds for n − 2, n − 1:

trek(n − 2) = 3 · fn−2 − 3,

trek(n − 1) = 3 · fn−1 − 3.

Using

trek(n) = 3 + trek(n − 1) + trek(n − 2) for n ≥ 3,

fn = fn−1 + fn−2

we obtain:

trek(n) = 3 +
︷ ︸︸ ︷

3 · fn−2 − 3 + 3 · fn−1 −3
︸ ︷︷ ︸

= 3 · fn − 3



Lemma 1
It holds that trek(n) = 3 · fn − 3 for n ≥ 1.

Proof.
The base case:

trek(1) = 0,

trek(2) = 0.

Assume the statement holds for n − 2, n − 1:

trek(n − 2) = 3 · fn−2 − 3,

trek(n − 1) = 3 · fn−1 − 3.

Using

trek(n) = 3 + trek(n − 1) + trek(n − 2) for n ≥ 3,

fn = fn−1 + fn−2

we obtain:

trek(n) = 3 +
︷ ︸︸ ︷

3 · fn−2 − 3 + 3 · fn−1 −3
︸ ︷︷ ︸

= 3 · fn − 3



Lemma 1
It holds that trek(n) = 3 · fn − 3 for n ≥ 1.

Proof.
The base case:

trek(1) = 0,

trek(2) = 0.

Assume the statement holds for n − 2, n − 1:

trek(n − 2) = 3 · fn−2 − 3,

trek(n − 1) = 3 · fn−1 − 3.

Using

trek(n) = 3 + trek(n − 1) + trek(n − 2) for n ≥ 3,

fn = fn−1 + fn−2

we obtain:

trek(n) = 3 +
︷ ︸︸ ︷

3 · fn−2 − 3 + 3 · fn−1 −3
︸ ︷︷ ︸

= 3 · fn − 3



Lemma 1
It holds that trek(n) = 3 · fn − 3 for n ≥ 1.

Proof.
The base case:

trek(1) = 0,

trek(2) = 0.

Assume the statement holds for n − 2, n − 1:

trek(n − 2) = 3 · fn−2 − 3,

trek(n − 1) = 3 · fn−1 − 3.

Using

trek(n) = 3 + trek(n − 1) + trek(n − 2) for n ≥ 3,

fn = fn−1 + fn−2

we obtain:

trek(n) = 3 +
︷ ︸︸ ︷

3 · fn−2 − 3 + 3 · fn−1 −3
︸ ︷︷ ︸

= 3 · fn − 3



Lemma 1
It holds that trek(n) = 3 · fn − 3 for n ≥ 1.

Proof.
The base case:

trek(1) = 0,

trek(2) = 0.

Assume the statement holds for n − 2, n − 1:

trek(n − 2) = 3 · fn−2 − 3,

trek(n − 1) = 3 · fn−1 − 3.

Using

trek(n) = 3 + trek(n − 1) + trek(n − 2) for n ≥ 3,

fn = fn−1 + fn−2

we obtain:

trek(n) = 3 +
︷ ︸︸ ︷

3 · fn−2 − 3 + 3 · fn−1 −3
︸ ︷︷ ︸

= 3 · fn − 3



Lemma 1
It holds that trek(n) = 3 · fn − 3 for n ≥ 1.

Proof.
The base case:

trek(1) = 0,

trek(2) = 0.

Assume the statement holds for n − 2, n − 1:

trek(n − 2) = 3 · fn−2 − 3,

trek(n − 1) = 3 · fn−1 − 3.

Using

trek(n) = 3 + trek(n − 1) + trek(n − 2) for n ≥ 3,

fn = fn−1 + fn−2

we obtain:

trek(n) = 3 +
︷ ︸︸ ︷

3 · fn−2 − 3 + 3 · fn−1 −3
︸ ︷︷ ︸

= 3 · fn − 3



Lemma 1
It holds that trek(n) = 3 · fn − 3 for n ≥ 1.

Proof.
The base case:

trek(1) = 0,

trek(2) = 0.

Assume the statement holds for n − 2, n − 1:

trek(n − 2) = 3 · fn−2 − 3,

trek(n − 1) = 3 · fn−1 − 3.

Using

trek(n) = 3 + trek(n − 1) + trek(n − 2) for n ≥ 3,

fn = fn−1 + fn−2

we obtain:

trek(n) = 3 +
︷ ︸︸ ︷

3 · fn−2 − 3 + 3 · fn−1 −3
︸ ︷︷ ︸

= 3 · fn − 3



Lemma 1
It holds that trek(n) = 3 · fn − 3 for n ≥ 1.

Proof.
The base case:

trek(1) = 0,

trek(2) = 0.

Assume the statement holds for n − 2, n − 1:

trek(n − 2) = 3 · fn−2 − 3,

trek(n − 1) = 3 · fn−1 − 3.

Using

trek(n) = 3 + trek(n − 1) + trek(n − 2) for n ≥ 3,

fn = fn−1 + fn−2

we obtain:

trek(n) = 3 +
︷ ︸︸ ︷

3 · fn−2 − 3 + 3 · fn−1 −3
︸ ︷︷ ︸

= 3 · fn − 3



Lemma 1
It holds that trek(n) = 3 · fn − 3 for n ≥ 1.

Proof.
The base case:

trek(1) = 0,

trek(2) = 0.

Assume the statement holds for n − 2, n − 1:

trek(n − 2) = 3 · fn−2 − 3,

trek(n − 1) = 3 · fn−1 − 3.

Using

trek(n) = 3 + trek(n − 1) + trek(n − 2) for n ≥ 3,

fn = fn−1 + fn−2

we obtain:

trek(n) = 3 +
︷ ︸︸ ︷

3 · fn−2 − 3 + 3 · fn−1 −3
︸ ︷︷ ︸

= 3 · fn − 3


	Goals of this Course
	Contents
	Literature
	Introduction
	Algorithms and Efficiency
	Maximum Feasible Input Size
	Introductory Example: The Fibonacci Numbers
	1st Algorithm for Computing Fibonacci Numbers


