Buffer Trees

Lars Arge. *The Buffer Tree: A New Technique for Optimal I/O Algorithms*. In Proceedings of Fourth Workshop on Algorithms and Data Structures (WADS), Lecture Notes in Computer Science Vol. 955, Springer-Verlag, 1995, 334-345.

Computational Geometry

Pairwise Rectangle Intersection

Intersection Types

 Intersection
 Identified by...

 A
 B

 Orthogonal Line Segment Intersection on 4N rectangle sides

 D
 E

 Batched Range Searching on N rectangles and N upper-left corners

Algorithm Orthogonal Line Segment Intersection

+ Batched Range Searching + Duplicate removal

Orthogonal Line Segment Intersection

InputN segments, vertical and horizontalOutputall R intersections

Sweepline Algorithm

- Sort all endpoints w.r.t. *x*-coordinate
- Sweep left-to-right with a range tree *T* storing the *y*-coordinates of horizontal segments intersecting the sweepline
- Left endpoint \Rightarrow insertion into T
- Right endpoint \Rightarrow deletion from T
- Vertical segment $[y_1, y_2] \Rightarrow$

report $T \cap [y_1, y_2]$

Total (internal) time $O(N \cdot \log_2 N + R)$

Range Trees

Create	Create empty structure	
Insert(x)	Insert element x	
Delete(x)	Delete the inserted element x	
$Report(x_1, x_2)$	Report all $x \in [x_1, x_2]$	

	Binary search trees	B-trees
	(internal)	(# I/Os)
Updates	$O(\log_2 N)$	$O(\log_B N)$
Report	$O(\log_2 N + R)$	$O(\log_B N + \frac{R}{B})$

Orthogonal Line Segment Intersection using B-trees

$$O(\operatorname{Sort}(N) + N \cdot \log_B N + \frac{R}{B}) \operatorname{I/Os} \ldots$$

Batched Range Searching

InputN rectangles and pointsOutputall R(r, p) where point p is within rectangle r

Sweepline Algorithm

- Sort all points and left/right rectangle sides w.r.t. *x*-coordinate
- Sweep left-to-right while storing the y-intervals of rectangles intersecting the sweepline in a segment tree T
- Left side \Rightarrow insert interval into T
- Right side \Rightarrow delete interval from T
- Point $(x, y) \Rightarrow$ stabbing query : report all $[y_1, y_2]$ where $y \in [y_1, y_2]$

Total (internal) time $O(N \cdot \log_2 N + R)$

Segment Trees

Create	Create empty structure
$Insert(x_1, x_2)$	Insert segment $[x_1, x_2]$
$Delete(x_1, x_2)$	Delete the inserted segment $[x_1, x_2]$
Report(x)	Report the segments $[x_1, x_2]$ where $x \in [x_1, x_2]$

Assumption The endpoints come from a fixed set S of size N+1

- $\bullet\,$ Construct a balanced binary tree on the N intervals defined by S
- Each node spans an interval and stores a linked list of intervals
- An interval I is stored at the $O(\log N)$ nodes where the node intervals $\subseteq I$ but the intervals of the parents are not

Create	$O(N \log_2 N)$
Insert	$O(\log_2 N)$
Delete	$O(\log_2 N)$
Report	$O(\log_2 N + R)$

Computational Geometry – Summary

Pairwise Rectangle Intersection Orthogonal Line Segment Intersection Batched Range Searching

 $O(N \cdot \log_2 N + R)$

Range Trees
Segment Trees

Updates $O(\log_2 N)$ Queries $O(\log_2 N + R)$

Observations on Range and Segment Trees

- Only inserted elements are deleted, i.e. Delete does not have to check if the elements are present in the structure
- Applications are off-line, i.e. amortized performance is sufficient
- Queries to the range trees and segment trees can be answered lazily, i.e. postpone processing queries until there are sufficiently many queries to be handled simultaneously
- Output can be generated in arbitrary order, i.e. batched queries
- The deletion time of a segment in a segment tree is known when the segment is inserted, i.e. no explicit delete operation required

Assumptions for buffer trees

Buffer Trees

Buffer Trees

- (a, b)-tree, a = m/4 and b = m
- Buffer at internal nodes m blocks
- Buffers contain delayed operations, e.g. lnsert(x) and lelete(x)
- Internal memory buffer containing $\leq B$ last operations Moved to root buffer when full
- Invariant Buffers at internal nodes contain $\leq mB/2$ elements

Buffer Emptying : Insertions Only

Emptying internal node buffers

- Distribute $\leq m/2$ blocks of elements to children
- $\bullet\,$ For each child with m/2 blocks of elements recursively empty buffer
- If buffer non-empty repeat

Emptying leaf buffers

- Sort buffer
- Merge buffer with leaf blocks

 $O(\frac{n}{m})$ buffer empty operations per internal level, each of O(m) I/Os \Rightarrow in total O(Sort(N)) I/Os

• Rebalance by splitting nodes bottom-up (where buffers are empty)

Corollary Optimal sorting by top-down emptying all buffers

Priority Queues

- Operations : Insert(x) and DeleteMin
- Internal memory min-buffer containing the $\frac{1}{4}mB$ smallest elements
- Allow nodes on leftmost path to have degree between 1 and m \Rightarrow rebalancing only requires node splittings
- Buffer emptying on leftmost path
 - \Rightarrow two leftmost leaves contain $\ge mB/4$ elements
- Insert and DeleteMin amortized $O(\frac{1}{B}\log_{M/B}\frac{N}{B})$ I/Os

Batched Range Trees

Delayed operations in buffers : Insert(x), Delete(x), $Report(x_1, x_2)$

Time Order Representation

Definition A buffer is in time order representation (TOR) if

- 1. Report queries are older than Insert operations and younger than Delete operations
- 2. Insertions and deletions are in sorted order
- 3. Report queries are sorted w.r.t. x_1

Delete	Report	Insert	time
x_1, x_2, \ldots	$[x_{11}, x_{12}], [x_{21}, x_{22}], \dots$	y_1, y_2, \ldots	
$x_1 \le x_2 \le \cdots$	$x_{11} \leq x_{21} \leq \cdots$	$y_1 \leq y_2 \leq \cdots$	

Constructing Time Order Representations

Lemma A buffer of O(M) elements can be made into TOR using $O(\frac{M+R}{B})$ I/Os where R is the number of matches reported

Proof

- Load buffer into memory
- First Inserts are shifted up thru time
 - If Insert(x) passes $\text{Report}(x_1, x_2)$ and $x \in [x_1, x_2]$ then a match is reported
 - If $\operatorname{Insert}(x)$ meets $\operatorname{Delete}(x)$, then both operations are removed
- Deletes are shifted down thru time
 - If Delete(x) passes $Report(x_1, x_2)$ and $x \in [x_1, x_2]$ then a match is reported
- Sort Deletions, Reports and Insertion internally
- Output to buffer

Merging Time Order Representations

Lemma Two list S_1 and S_2 in TOR where the elements in S_2 are older than the elements in S_1 can be merged into one time ordered list in $O(\frac{|S_1|+|S_2|+R}{B})$ I/Os

Proof

- 1. Swap i_2 and d_1 and remove canceling operations
- 2. Swap d_1 and s_2 and report matches
- 3. Swap i_2 and s_1 and report matches
- 4. Merge lists

Emptying All Buffers

Lemma Emptying all buffers in a tree takes $O(\frac{N+R}{B})$ I/Os **Proof**

- Make all buffers into time order representation, $O(\frac{N+R}{B})$ I/Os
- Merge buffers top-down for complete layers \Rightarrow since layer sizes increase geometrically, #I/Os dominated by size of lowest level, i.e $O(\frac{N+R}{B})$ I/Os

Note The tree should be rebalanced afterwards

Emptying Buffer on Overflow

Invariant Emptying a buffer distributes information to children in TOR

- 1. Load first $m \ {\rm blocks}$ in and make TOR and report matches
- 2. Merge with result from parent in TOR that caused overflow
- 3. Identify which subtrees are spanned completely by a Report (x_1, x_2)
- 4. Empty subtrees identified in **??**.
 - Merge with Delete operations
 - Generate output for the range queries spanning the subtrees
 - Merge Insert operations
- 5. Distribute remaining information to trees not found in ??.

Batched Range Trees - The Result

Rebalancing As in (a, b)-trees, except that buffers must be empty. For Fusion and Sharing a forced buffer emptying on the sibling is required, causing O(m) additional I/Os. Since at most O(n/m) rebalancing steps done $\Rightarrow O(n)$ additional I/Os.

Total #I/Os Bounded by generated output $O(\frac{R}{B})$, and $O(\frac{1}{B})$ I/O for each level an operation is moved down.

Theorem Batched range trees support

Updates	$O\left(\frac{1}{N}Sort(N)\right)$ amortized I/Os
Queries	$O\left(\frac{1}{N}Sort(N) + \frac{R}{B}\right)$ amortized I/Os

Batched Segment Trees

- Internal node:
 - Partition x-interval in \sqrt{m} slabs/intervals
 - ${\cal O}(m)$ multi-slabs defined by continuous ranges of slabs
 - Segments spanning at least one slab (long segment) stored in list associated with largest multi-slab it spans
 - Short segments, as well as ends of long segments, are stored further down the tree

Batched Segment Trees

- Load buffer O(m)
- Store long segments from buffer in multi-slab lists O(m)
- Report "intersections" between queries from buffer and segments in relevant multi-slab lists $O(\frac{R}{B})$
- "Push" elements one level down O(m)

Batched Segment Trees

Theorem Batched segment trees support

Updates	$O(\frac{1}{N}Sort(N))$ amortized I/Os
Queries	$O(\frac{1}{N}Sort(N) + \frac{R}{B})$ amortized I/Os

Orthogonal Line Segment Intersection

- Sort all endpoints w.r.t. *x*-coordinate
- Sweep left-to-right with a batched range tree T
- Left endpoint \Rightarrow insertion into T
- Right endpoint \Rightarrow deletion from T
- Vertical segment \Rightarrow batched report

 $\operatorname{Sort}(N)$ $O(\frac{N}{B})$

 $\Big\} \quad O(\tfrac{1}{B}\log_{M/B}\tfrac{N}{B})$

$$O(\frac{1}{B}\log_{M/B}\frac{N}{B} + \frac{R}{B})$$

 $O(\operatorname{Sort}(N) + \frac{R}{B}) \operatorname{I/Os}$

Batched Range Searching

- Sort w.r.t. *x*-coordinate
- Sweep left-to-right with a batched segment tree ${\cal T}$
- Left side \Rightarrow insert interval into T
- Right side \Rightarrow delete interval from T
- Point ⇒ batched stabbing query

 $\mathsf{Sort}(N)$

- $O(\frac{N}{B})$
- $\Big\} \quad O(\tfrac{1}{B} \log_{M/B} \tfrac{N}{B})$
- $\frac{O(\frac{1}{B}\log_{M/B}\frac{N}{B} + \frac{R}{B})}{O(\mathsf{Sort}(N) + \frac{R}{B}) \mathsf{ I/Os}}$

Pairwise Rectangle Intersection

Trick Only generate one intersection between two rectangles $\Rightarrow O(\text{Sort}(N) + \frac{R}{B}) \text{ I/Os}$

Buffer Tree Applications – Summary

Pairwise Rectangle Intersection Orthogonal Line Segment Intersection Batched Range Searching

 $O(\mathsf{Sort}(N) + \frac{R}{B})$

Batched Range Trees Batched Segment Trees Updates $O(\frac{1}{N}Sort(N))$ Queries $O(\frac{1}{N}Sort(N) + \frac{R}{B})$

Priority Queues

 $O(\tfrac{1}{N}\mathsf{Sort}(N))$