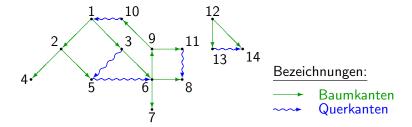
8. Ein Algorithmus für die transitive Hülle in Digraphen mit linearer erwarteter Laufzeit.

Wir nehmen an, dass die Wahrscheinlichkeit eines Digraphen mit nKnoten und m Kanten eine Funktion (nur) von n und m ist. Daraus folgt (wir lassen der Einfachheit halber Schleifen (= Kanten $v \to v$) zu), dass jede Kante (u, v) mit Wahrscheinlichkeit $\frac{m}{n^2}$ vorhanden ist, falls wir Digraphen mit n Knoten und m Kanten betrachten.

Erinnerung: Breitensuche (BFS): Schlange, queue, FIFO:

Durchlaufe Graphen, indem wir, solange möglich, den vordersten Knoten v aus der Queue nehmen, ihn behandeln und die Liste seiner noch nicht behandelten Nachbarn in die Queue hinten einfügen.

Beispiel 122



EADS

algorithm exp-lin-transitive-closure

0. Konstruiere die linear geordneten Adjazenzlisten L_i^r , $i=1,\ldots,n$ des Graphen G^r (entsteht aus G durch Umkehrung aller Kanten). Beispiel:

Ersetze ebenfalls alle L_i durch L_i^{rr} (\rightarrow sortierte Adjazenzlisten)

- 1. Berechne für jeden Knoten i in BFS-Art eine Liste S_i von von i aus erreichbaren Knoten, so dass (i) oder (ii) gilt:
 - (i) $|S_i|<\left\lfloor\frac{n}{2}\right\rfloor+1$ und S_i enthält alle von i aus erreichbaren Knoten
 - (ii) $|S_i| = \lfloor \frac{n}{2} \rfloor + 1$
- 2. Entsprechende Listen P_i von Vorgängern von i
- 3. for i:=1 to n do $L_i^*:=S_i\cup\{j;i\in P_j\}\cup\{j;\;|S_i|=|P_j|=\left\lfloor\frac{n}{2}\right\rfloor+1\}$ od Bilde $(L_i^*)^{rr}$ für $i=1,\ldots,n$

Korrektheit: $j \in L_i^*$ gdw (i, j) in transitiver Hülle.

Satz 123

Sei die Wahrscheinlichkeit eines Graphen (lediglich) eine Funktion der Anzahl n seiner Knoten und der Anzahl m seiner Kanten. Dann ist der Erwartungswert für die Laufzeit des obigen Algorithmus $\mathcal{O}(n+m^*)$. Dabei ist m^* der Erwartungswert für die Anzahl der Kanten in der transitiven Hülle.

Beweis:

Das Durchlaufen des Graphen (von v_1 aus für die Konstruktion von S_1) in BFS-Manier liefert eine Folge $(a_t)_{t\geq 1}$ von Knoten. Sei $L_{\sigma(\nu)}$ die ν -te Adjazenzliste, die in der BFS erkundet wird,

$$L_{\sigma(\nu)} = (a_t; \ h(\nu) < t \le h(\nu+1))$$

Sei $\Delta L_{\sigma(\nu)}$ die Menge der a_t in $L_{\sigma(\nu)}$, und sei

$$S_i(t) := \{a_1, a_2, \dots, a_t\}.$$

Wie bereits gezeigt, ist

$$\Pr[j \in L_i] = \frac{m}{n^2}, \quad \forall i, j$$

Alle n-Tupel von geordneten Listen L_1, L_2, \ldots, L_n mit

$$m = \sum_{i=1}^{n} |L_i|$$

sind aufgrund der Voraussetzungen über die

Wahrscheinlichkeitsverteilung gleich wahrscheinlich. Also:

Beobachtung 1: Die Mengen $\Delta L_{\sigma(\nu)}$, $\nu=1,2,\ldots$ sind (paarweise) unabhängig.

Beobachtung 2: Die $\Delta L_{\sigma(\nu)}$ sind gleichverteilt, d.h. für alle $A\subseteq\{1,\dots,n\}$ gilt:

$$\Pr[\Delta L_{\sigma(\nu)} = A] = (\frac{m}{n^2})^{|A|} (1 - \frac{m}{n^2})^{n-|A|}$$

Lemma 124

Sei $A \subseteq \{1, \ldots, n\}$ mit |A| = k. Sei $(\bar{a}_t)_{t \ge 1}$ eine Folge von unabhängigen gleichverteilten Zufallsvariablen mit Wertemenge $\{1, \ldots, n\}$. Dann gilt:

$$\min\{t; \bar{a}_t \notin A\}$$
 hat Erwartungswert $1 + \frac{k}{n-k}$.

Beweis:

[des Lemmas] $\Pr[\bar{a}_1, \dots, \bar{a}_r \in A \text{ und } \bar{a}_{r+1} \notin A] = \left(\frac{k}{n}\right)^r \cdot (1 - \frac{k}{n}).$ Also ist der Erwartungswert für $\min\{t; \bar{a}_t \notin A\}$:

$$1 + \sum_{r=0}^{\infty} r \left(\frac{k}{n}\right)^r \left(1 - \frac{k}{n}\right) = 1 + \frac{k}{n} \left(1 - \frac{k}{n}\right) \sum_{r \ge 1} r \left(\frac{k}{n}\right)^{r-1}$$
$$= 1 + \frac{k}{n} \left(1 - \frac{k}{n}\right) \frac{1}{\left(1 - \frac{k}{n}\right)^2}$$
$$= 1 + \frac{\frac{k}{n}}{1 - \frac{k}{n}} = 1 + \frac{k}{n - k}.$$

Anmerkung:

$$\sum_{r=0}^{\infty} rz^{r-1} = \frac{d}{dz} \frac{1}{1-z} = \frac{1}{(1-z)^2}$$

Lemma 125

Sei $(\bar{a}_t)_{t\geq 1}$ wie oben, $k\leq \frac{n}{2}$. Dann hat $\min\{t; |\bar{a}_1, \bar{a}_2, \dots, \bar{a}_t| > k\}$ Erwartungswert $\leq \frac{3}{2}(k+1)$.

Beweis:

[des Lemmas] Wegen der Additivität des Erwartungswertes gilt: Der gesuchte Erwartungswert ist

$$\leq \sum_{\nu=0}^{k} \left(1 + \frac{\nu}{n-\nu} \right)$$

$$\leq k+1 + \sum_{\nu=1}^{k} \frac{\nu}{\frac{n}{2}}$$

$$\leq k+1 + \frac{k(k+1)}{n} \leq \frac{3}{2}(k+1).$$

Wenn wir jedes $L_{\sigma(\nu)}$ in sich zufällig permutieren, erhalten wir eine Folge $(\bar{a}'_t)_{t\geq 1}$ von Zufallsvariablen, so dass

$$|\{\bar{a}_1,\ldots,\bar{a}_t\}| = |\{\bar{a}'_1,\ldots,\bar{a}'_t\}| \text{ für } t = h(\nu), \quad \forall \nu$$

Da die \bar{a}'_t innerhalb eines jeden Intervalls $h(\nu) < t \leq h(\nu+1)$ paarweise verschieden sind, gilt für sie die vorhergehende Abschätzung erst recht. Wir betrachten nun aus Symmetriegründen o.B.d.A. lediglich den Knoten i=1. Dann sind $(|S_1(t)|)_{t\geq 1}$ und $(|S_1(t)'|)_{t\geq 1}$ gleichverteilte Folgen von Zufallsvariablen, denn dies gilt zunächst für alle Zeitpunkte der Form t=h(y); da aber für diese Zeitpunkte $S_1(t)=S_1'(t)$ ist und $h(\cdot)$ zufällig verteilt ist, ist auch die Verteilung der beiden Folgen zwischen diesen Intervallgrenzen identisch.

Sei s der Erwartungswert und $|S_i|$ die tatsächliche Größe von S_i nach Phase 1. Dann

$$s = \sum_{k=1}^{\left\lfloor \frac{n}{2} \right\rfloor + 1} k \cdot \Pr[|S_i| = k].$$

Die erwartete Anzahl der Schritte (und damit die Kosten) in der BFS sei q. Dann gilt:

$$q \le \sum_{k=1}^{\lfloor \frac{n}{2} \rfloor + 1} \Pr[|S_i| = k] \frac{3}{2} k = \frac{3}{2} s.$$

Also ist der Aufwand des Algorithmus für die Phasen 1 und 2 im Erwartungswert $\leq 3sn$. Da $ns \leq m^*$ und die Kosten der anderen Phasen offensichtlich durch $\mathcal{O}(n+m+m^*)$ beschränkt sind, folgt die Behauptung.

C.P. Schnorr:

An algorithm for transitive closure with linear expected time SIAM J. Comput. 7(2), pp. 127-133 (1978)

9. Matrixmultiplikation à la Strassen

Betrachte das Produkt zweier 2×2 -Matrizen:

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}; \quad c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j}$$

Man beachte, dass diese und die folgenden Formeln nicht die Kommutativität der Multiplikation voraussetzen. Sie gelten also auch, falls die a_{ij} , b_{ij} , c_{ij} eigentlich $n \times n$ -Matrizen A_{ij} , B_{ij} , C_{ij} sind (jeweils $i, j \in \{1, 2\}$).

Bilde:

$$m_1 := (a_{12} - a_{22})(b_{21} + b_{22})$$

$$m_2 := (a_{11} + a_{22})(b_{11} + b_{22})$$

$$m_3 := (a_{11} - a_{21})(b_{11} + b_{12})$$

$$m_4 := (a_{11} + a_{12})b_{22}$$

$$m_5 := a_{11}(b_{12} - b_{22})$$

$$m_6 := a_{22}(b_{21} - b_{11})$$

$$m_7 := (a_{21} + a_{22})b_{11}$$

Dann gilt:

$$c_{11} := m_1 + m_2 - m_4 + m_6$$

$$c_{12} := m_4 + m_5$$

$$c_{21} := m_6 + m_7$$

$$c_{22} := m_2 - m_3 + m_5 - m_7$$

Sei $n=2^k$ und M(n) die Anzahl arithmetischer Operationen (Mult, Add, Sub), die Strassen's Algorithmus bei $n \times n$ Matrizen benötigt:

$$M(1) = 1$$

$$M(n) = 7M\left(\frac{n}{2}\right) + 18\left(\frac{n}{2}\right)^{2}$$

Expansion dieser Rekursionsgleichung \Rightarrow

$$\begin{split} M(n) &= 7^{k+1} - 6n^2 = 7 \cdot 2^{k \log_2 7} - 6n^2 \\ &= 7n^{\log_2 7} - 6n^2 \\ &< 7n^{2,80736} - 6n^2 \\ &= \mathcal{O}(n^{2,81}) \,. \end{split}$$

Der Exponent ω für die Matrixmultiplikation ist also < 2.81.

proc MATMULT(A, B, n) =

co A und B sind $n \times n$ Matrizen **oc**

if n < 16 then berechne $A \cdot B$ mit klassischer Methode

elif n gerade then

spalte A und B in je 4 $\frac{n}{2} \times \frac{n}{2}$ Matrizen auf und wende Strassen's Formeln an. Führe die Multiplikationen rekursiv mit MATMULT aus.

else

spalte A und B in je eine $(n-1) \times (n-1)$ Matrix (A_{11}, B_{11}) und drei verbleibende Blöcke auf. Wende MATMULT rekursiv auf A_{11} , B_{11} an und berechne die anderen Produkte mit der klassischen Methode.

fi

Satz 126

Der MATMULT-Algorithmus hat folgende Eigenschaften:

- Für n < 16 ist die Anzahl der arithmetischen Operationen genauso hoch wie bei der klassischen Methode.
- 2 Für n > 16 ist die Anzahl der arithmetischen Operationen echt kleiner als hei der klassischen Methode
- **3** MATMULT braucht nie mehr als $4,91n^{\log_2 7}$ arithmetische Operationen.

Beweis:

1 √

2 Sei n gerade und seien A, B zwei $n \times n$ Matrizen. Wir wenden Strassen's Formeln an, führen aber die 7 Multiplikationen der $\frac{n}{2} \times \frac{n}{2}$ Matrizen mit der klassischen Methode aus. Gesamtzahl arithmetischer Operationen:

$$7\left(2\left(\frac{n}{2}\right)^3 - \left(\frac{n}{2}\right)^2\right) + 18\left(\frac{n}{2}\right)^2 = \frac{7}{4}n^3 + \frac{11}{4}n^2$$

Dies ist besser als die klassische Methode, falls:

$$\frac{7}{4}n^3 + \frac{11}{4}n^2 < 2n^3 - n^2 \Leftrightarrow \frac{15}{4}n^2 < \frac{1}{4}n^3 \Leftrightarrow 15 < n \Leftrightarrow n \ge 16$$

Sei n ungerade. Multiplizieren wir $A \cdot B$ mit der klassischen Methode, so auch $A_{11} \cdot B_{11}$. Also brauchen wir durch Anwendung von Strassen's Formeln auf die $(n-1) \times (n-1)$ Matrizen (n-1 gerade) weniger Operationen, wenn $n-1 \ge 16$ ist.

Sei M'(n) die Anzahl arithmetischer Operationen in MATMULT. Dann ist:

$$M'(n) = \begin{cases} 2n^3 - n^2 & \text{falls } n < 16 \\ 7M'\left(\frac{n}{2}\right) + \frac{18}{4}n^2 & \text{falls } n \geq 16 \text{ gerade} \\ 7M'\left(\frac{n-1}{2}\right) + \frac{42}{4}n^2 - 17n + \frac{15}{2} & \text{falls } n \geq 16 \text{ ungerade} \end{cases}$$

Wir definieren für $x \in \mathbb{R}^+$:

$$\bar{M}(x) = \begin{cases} 2x^3 - x^2 & \text{falls } x < 32\\ 7\bar{M}\left(\frac{x}{2}\right) + \frac{42}{4}x^2 & \text{falls } x \ge 32 \end{cases}$$

Dann gilt:

$$\bar{M}(n) \geq M'(n)$$
 für alle $n \in \mathbb{N}$.

Es ist

$$\bar{M}(x) = \sum_{i=0}^{k-1} \left[7^i \cdot \frac{42}{4} \left(\frac{x}{2^i} \right)^2 \right] + 7^k \left(2 \cdot \left(\frac{x}{2^k} \right)^3 - \left(\frac{x}{2^k} \right)^2 \right)$$

für $x \ge 32$, wobei $k := \min \{ l \mid \frac{x}{2l} < 32 \}$.

Mit $k = \lfloor \log_2 x \rfloor - 4 =: \log_2 x - t$ erhalten wir $t \in [4, 5]$ und

$$\bar{M}(x) \leq 7^{\log_2 x} \left(14 \left(\frac{4}{7}\right)^t + 2 \left(\frac{8}{7}\right)^t\right) \leq 4,91 \cdot 7^{\log_2 x} \text{ für } x \geq 32.$$

Für x < 32 direkt nachrechnen.

Gaussian elimination is not optimal Numer. Math. 13, pp. 354-356 (1969)

Victor Ya Pan:

New fast algorithms for matrix operations SIAM J. Comput. **9**(2), pp. 321–342 (1980)

Don Coppersmith, Shmuel Winograd:

Matrix multiplication via arithmetic progressions

J. Symbolic Computation 9(3), pp. 251-280 (1990)

