Fortgeschrittene Netzwerk- und Graph-Algorithmen

Dr. Hanjo Täubig

Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München

Wintersemester 2007/08

Übersicht

- Zusammenhang
 - Gomory-Hu-Bäume zur Repräsentation lokaler MinCuts
 - Knotenzusammenhangsalgorithmen

All-Pairs MaxFlow / MinCut

- gegeben: Graph G = (V, E) mit n Knoten, p ausgewählte Knoten
- gesucht: (lokale) MaxFlow/MinCut-Werte für alle Paare aus den p gegebenen Knoten
- \Rightarrow kann einfach durch Lösen von $\binom{p}{2} = \frac{1}{2}p(p-1)$ MaxFlow-Problemen berechnet werden.
 - Kann in ungerichteten Graphen aber auch mit nur p-1 MaxFlow-Berechnungen gelöst werden.

Equivalent Flow Trees

Sei G also ungerichtet und sei $v_{ij} = v_{ji}$ der Wert eines MaxFlows zwischen den Knoten i und j.

Lemma

• Für alle Knoten $i, j, k \in \{1, ..., n\}$ gilt:

$$v_{ik} \geq \min\{v_{ij}, v_{jk}\}$$

2 Es gibt einen Baum T auf den Knoten 1 bis n, so dass für alle Paare von Knoten i, j gilt:

$$v_{ij} = \min\{v_{ij_1}, v_{j_1j_2}, \dots, v_{j_kj}\},\$$

wobei $i - j_1 - \cdots - j_k - j$ der (eindeutige) Pfad von Knoten i zu Knoten j in T ist.

Equivalent Flow Trees

- Sei (X, \bar{X}) ein i, k-MinCut, d.h. $v_{ik} = w(X, \bar{X})$.
 - Falls $j \in \bar{X}$, dann gilt $v_{ij} \leq w(X, \bar{X}) = v_{ik}$.
 - Falls $j \in X$, dann gilt $v_{jk} \leq w(X, \bar{X}) = v_{ik}$.
- 2 Betrachte K_n (den vollständigen Graphen auf n Knoten), bei dem jede Kante (i,j) mit v_{ij} gewichtet ist und sei T darin ein Spannbaum maximalen Gewichts.
 - Induktiv folgt aus dem vorangegangenen Punkt, dass für jedes Knotenpaar (i,j) gilt: $v_{ij} \geq \min\{v_{ij_1},v_{j_1j_2},\ldots,v_{j_kj}\}$, wobei $i-j_1-\cdots-j_k-j$ der (eindeutige) Pfad von Knoten i zu Knoten j in T ist.
 - Angenommen, für ein Paar (i,j) gilt echte Ungleichheit. Dann gibt es eine Kante (i',j') auf dem Pfad zwischen i und j mit $v_{ij} > v_{i'j'}$. Das würde bedeuten, dass der Baum T' der aus T durch Tausch von (i',j') gegen (i,j) entsteht, ein größeres Gewicht hätte. (Widerspruch)

- Die Existenz eines Equivalent Flow Trees hat natürlich gleichzeitig die Konsequenz, dass unter den $\binom{n}{2}$ MaxFlowbzw. MinCut-Werten v_{ij} nur höchstens n-1 verschiedene Werte existieren können (nämlich die Kantengewichte von T).
- Außerdem kommt man so zu der Vermutung, dass n-1 MaxFlow-Berechnungen genügen, um einen solchen Equivalent Flow Tree T zu konstruieren und damit alle v_{ij} -Werte zu berechnen. Ein Algorithmus von Gomory und Hu erreicht dies tatsächlich.

- Gegeben zwei Knoten i, j und ein i, j-MinCut (X, \bar{X}) .
- Definiere den kontrahierten Graph G^c als den Graph, den man aus G erhält, indem man die Knoten in \bar{X} zu einem einzelnen (speziellen) Knoten $u_{\bar{X}}$ zusammenfasst und für jeden Knoten $v \in X$ alle über den Schnitt führenden Kanten durch eine einzelne Kante $\{v,u_{\bar{X}}\}$ mit der entsprechend summierten Gesamtkapazität ersetzt.

Lemma

Für jedes Paar von (normalen) Knoten i',j' in G^c (d.h. $i',j' \in X$) hat der MaxFlow bzw. MinCut zwischen i' und j' in G^c den gleichen Wert wie der MaxFlow/MinCut im Original-Graphen. (Entsprechendes gilt natürlich für Knoten $i',j' \in \bar{X}$, wenn man X in G kontrahiert.)

Corollary

Für jedes Paar von Knoten $i', j' \in X$ (oder \bar{X}) gibt es einen Minimum i', j'-Cut, so dass sich alle Knoten von \bar{X} (bzw. X) auf der gleichen Seite des Schnitts befinden.

- Für zwei Knoten i,j und einen i,j-MinCut (X,\bar{X}) repräsentiert man die aktuelle Situation durch einen Baum mit zwei Knoten (die für X und \bar{X} stehen) und einer Kante mit dem Gewicht v_{ij} . Die Kante repräsentiert dabei den Schnitt (X,\bar{X}) .
- Sei A die Menge der p zu betrachtenden Knoten, für die die MaxFlow/MinCut-Werte berechnet werden sollen..
- Die ersten beiden Knoten i und j werden aus A gewählt.

Definition

Ein Baum T wird als Semi-Cut Tree bezeichnet, falls er folgende Eigenschaften besitzt:

- Jeder Knoten U von T entspricht einer Teilmenge der Knoten von G und enthält mindestens einen Knoten der Menge A.
- ② Jede Kante (U, V) ist mit einem Label v versehen, so dass es Knoten $i, j \in A$ mit $i \in U$ und $j \in V$ gibt und der MaxFlow/MinCut zwischen i und j den Wert v hat.
- **3** Jede Kante (U, V) repräsentiert einen i, j-MinCut mit $i, j \in A$ und i ist in einem Knoten des Teilbaums auf der Seite von U enthalten und j ist in einem Knoten des Teilbaums auf der Seite von V enthalten (und die zwei Teile des Cut bestehen aus der jeweiligen Knotenmenge).

Wenn jeder Knoten eines Semi-Cut Trees T genau einen Knoten der Menge A enthält, dann bezeichnet man T als Cut Tree für A.

Satz

Sei T ein Cut Tree für A.

Dann gilt für jedes Paar $i, j \in A$: $v_{ij} = \min\{v_1, \dots, v_{k+1}\}$, wobei v_1 bis v_{k+1} die Kantengewichte in T auf dem Pfad vom Knoten, der i enthält, zum Knoten, der j enthält, sind.

- Sei $i j_1 \ldots j_k j$ die Folge von A-Knoten, die dem Pfad in T vom Knoten mit i zum Knoten mit j entsprechen.
- Aufgrund der Eigenschaften des Cut Trees sind die Kantenlabels einfach $v_{ij_1}, \ldots, v_{i_k j_k}$.
- Aufgrund des Lemmas gilt: $v_{ij} \ge \min\{v_{ij_1}, \dots, v_{j_k j}\}$.
- Andererseits entspricht jede Kante einem i, j-Schnitt, wobei die Kapazität dem Kantenlabel entspricht. Es gilt also:
 v_{ij} ≤ min {v_{ij1},..., v_{ikj}} und damit v_{ij} = min {v_{ij1},..., v_{ikj}}.

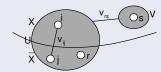
Satz

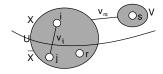
Ein Cut Tree für A existiert und kann mit Hilfe von nur p-1 MaxFlow-Brechnungen konstruiert werden.

- Angenommen, wir haben einen Semi-Cut Tree T für A und T hat noch einen Knoten U, der zwei Knoten $i, j \in A$ enthält.
- Aufgrund des Lemmas hat der MaxFlow zwischen i und j in G genau den gleichen Wert wie der MaxFlow zwischen i und j in dem (kontrahierten) Graph G^c , der entsteht, wenn man die Knotenmengen in jedem zu U verbundenen Teilbaum zu einem einzelnen (speziellen) Knoten kontrahiert und für jeden (Original-)Knoten $v \in U$ die Kanten, die in die jeweiligen Teilbäume führen, durch einzelne Kanten zu den entsprechenden neuen (speziellen) Knoten mit aufsummiertem

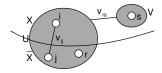
- Sei (X, \overline{X}) ein i, j-MinCut in G^c (notwendigerweise mit Kapazität v_{ij}).
- Konstruiere einen Baum T' wie folgt:
 - Spalte U in zwei Knoten X und \bar{X} .
 - Verbinde die Knoten X und \bar{X} durch eine Kante mit Label v_{ij} und verbinde jeden Nachbarn V von U entweder zu X oder zu \bar{X} , in Abhängigkeit von der Seite des Cuts, auf der sich der zu V's Teilbaum gehörende spezielle Knoten in G^c befunden hat (mit Original-Kantenlabel).
- Die Behauptung ist nun, dass T' auch wieder ein Semi-Cut Tree für A ist.

- Die einzige nicht-triviale zu überprüfende Eigenschaft ist der zweite Teil der Definition.
- Sei also V irgendein Nachbar von U in T und entspreche das Label der Kante (U, V) einem MaxFlow/MinCut-Wert zwischen $r \in U$ und $s \in V$ $(r, s \in A)$.
- Sei o.B.d.A. $j,r \in \bar{X}$, dann können folgende zwei Fälle auftreten:
 - ① V wird mit \bar{X} verbunden. Die Eigenschaften des Semi-Cut Trees bleiben erhalten.
 - 2 V wird mit X verbunden.





- Das Label v_{ij} für die Kante $\{X, \bar{X}\}$ entspricht der Definition. Betrachte nun das Label (v_{rs}) der Kante (X, V). Es wird gezeigt, dass $v_{is} = v_{rs}$:
 - $v_{is} \ge \min\{v_{ij}, v_{jr}, v_{rs}\}$ (Lemma).
 - Da i und s auf der gleichen Seite des Cuts sind, können die MaxFlow/MinCut-Werte zwischen Knoten in \bar{X} nicht den Wert von v_{is} beeinflussen (v_{jr} ist also egal) und es gilt $v_{is} \geq \{v_{ij}, v_{rs}\}.$



- Andererseits muss v_{is} durch den zur Kante (U,V) in T gehörigen MinCut beschränkt sein, d.h. $v_{is} \leq v_{rs}$. Aufgrund des Lemmas gilt $v_{ij} \geq \min\{v_{is}, v_{rs}\}$, also $v_{ij} \geq v_{rs}$. Daraus folgt $v_{is} = v_{rs}$ und die Kante (X,V) entspricht dem MaxFlow zwischen i und s (mit Wert und Schnitt-Mengen wie im Original-Graph).
- Eine wiederholte Aufspaltung liefert den Cut Tree mit Hilfe von p-1 MaxFlow-Berechnungen.

Unit Capacity Networks

Definition

- Ein Graph wird als Unit Capacity Network (oder 0-1 Network) bezeichnet, falls die Kapazität aller Kanten gleich 1 ist.
- Ein Unit Capacity Network ist vom Typ 1, falls es keine parallelen Kanten hat.
- Es ist vom Typ 2, falls für jeden Knoten v ($v \neq s$, $v \neq t$) entweder der Eingangsgrad $d^-(v)$ oder der Ausgangsgrad $d^+(v)$ gleich 1 ist.

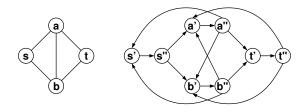
Unit Capacity Networks

Lemma

- Ein MaxFlow/MinCut kann für ein Unit Capacity Network (mit Dinitz' Algorithmus) in Zeit $\mathcal{O}(m^{3/2})$ berechnet werden.
- Für Unit Capacity Networks vom Typ 1 ist die Zeitkomplexität von Dinitz' Algorithmus $\mathcal{O}(n^{2/3}m)$.
- Für Unit Capacity Networks vom Typ 2 ist die Zeitkomplexität von Dinitz' Algorithmus $\mathcal{O}(n^{1/2}m)$.

(Beweis: siehe Shimon Even, Graph Algorithms, 1979)

Ungerichtete ungewichtete Graphen



- Gegeben: ungerichteter (ungewichteter) Graph G = (V, E)mit n Knoten und m Kanten
- Konstruiere gerichteten Graph $\bar{G}=(\bar{V},\bar{E})$ mit $|\bar{V}|=2n$ und $|\bar{E}|=2m+n$ wie folgt:
 - Ersetze jeden Knoten $v \in V$ durch zwei Knoten $v', v'' \in \overline{V}$, verbunden durch eine (interne) Kante $e_v = (v', v'') \in \overline{E}$.
 - Ersetze jede Kante $e = (u, v) \in E$ durch zwei (externe) Kanten e' = (u'', v') und $e'' = (v'', u') \in \overline{E}$.

Ungerichtete ungewichtete Graphen

- $\kappa(s,t)$ wird nun berechnet als MaxFlow in \bar{G} von Quelle s'' zu Senke t' mit Unit Capacity-Kanten
- Hinweis: $c(e_v) = 1$, $c(e') = c(e'') = \infty$ führt übrigens zum gleichen Ergebnis.
- Für jedes Paar $v', v'' \in \overline{V}$, das einen internen Knoten $v \in V$ repräsentiert, ist die interne Kante (v', v'') die einzige von v' ausgehende Kante und die einzige eingehende Kante von v''. Der Graph \overline{G} ist also ein UCN vom Typ 2.
- Nach dem Lemma kann die Berechnung des MaxFlow bzw. des lokalen Knotenzusammenhangs in Zeit $\mathcal{O}(\sqrt{nm})$ erfolgen.