Internet Algorithmik: Routing Methoden

Abgabetermin: 12. Juli 2007, 8.30 Uhr in der Übung

Aufgabe 1 (10 Punkte)

Zeigen Sie die folgende Proposition 43 aus der Vorlesung: Sei (A, F, S, c, n) ein nichtatomares Auslastungsmodell in Kostenform, wobei die Kostenfunktionen nicht-negativ, stetig und monoton wachsend sind. Eine Strategieverteilung x ist genau dann ein Wardrop-Gleichgewicht, genau dann wenn für alle $i \in A$ und $s, s' \in S_i$ und $0 < \delta \le x(s)$ gilt

$$c_s(x) \le c_{s'}(\tilde{x}),$$

wobei

$$\tilde{x}(\tilde{s}) = \begin{cases} x(\tilde{s}) - \delta &, \text{ falls } \tilde{s} = s \\ x(\tilde{s}) + \delta &, \text{ falls } \tilde{s} = s' \\ x(\tilde{s}) &, \text{ falls } \tilde{s} \notin \{s, s'\} \end{cases}$$

Aufgabe 2 (10 Punkte)

Wir untersuchen das Paradoxon von Braess. Betrachten Sie dazu folgendes nicht-atomares Auslastungsmodell $\Gamma = (\{1\}, \{a, b, c, d, e\}, \{\{a, b\}, \{c, d\}\{a, e, d\}\}, w, n)$ mit $n_1 = 1$ und

$$w_a(x) = w_d(x) = u$$
, $w_b(x) = w_c(x) = v \cdot x$, $w_e(x) = 0$,

wobei $u, v \in \mathbb{R}$ beliebige Konstanten sind. Charakterisieren Sie alle Fälle in Abängigkeit von u, v, in denen die Elimination von $e \in F$ und $\{a, e, d\} \in S$ nicht zu einer Verschlechterung der sozialen Kosten der Wardrop-Gleichgewichte führt.

Aufgabe 3 (10 Punkte)

Es sei $\mathcal{C} = \{t \mapsto a \cdot t + b : a, b \geq 0\}$ die Menge aller (quasi-)linearen Kostenfunktionen. Bestimmen Sie den Ineffizienzgrad $\alpha(\mathcal{C})$.