
Parallel Characteristics of Sequence Alignment Algorithms

Arun I<. Iyengar
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

Parallel algorithms for analyzing DNA and protein se-
quences are becoming increasingly important as se-
quence data continues to grow. This paper examines
the parallel characteristics of four sequence alignment
algorithms. The four algorithms presented are the dy-
namic programming algorithm developed by Needle-
man, Wunsch, and Sellers (the NWS algorithm), Fick-
ett’s algorithm, a parallel algorithm using some of Fick-
ett’s ideas, and an algorithm which uses some of Wilbur
and Lipman’s ideas for constructing alignments which
are not always optimal. The NWS algorithm contains
the most parallelism but also does more work than any
of the other algorithms which we studied. Fickett’s
algorithm contains the least parallelism. However, a
parallel algorithm which requires significantly fewer in-
structions than the NWS algorithm is obtained by mod-
ifying Fickett’s algorithm. The algorithms have been
implemented for a dataflow computer in the dataflow
language Id.

1 Introduction

This paper analyzes the parallel characteristics of four
algorithms for aligning DNA and protein sequences. Bi-
ological sequence data is accumulating very rapidly. In-
creasingly powerful computers will be needed for ana-
lyzing DNA and proteins as databases expand.

All living things transmit genetic information
through DNA. Important structural and functional
characteristics can be, determined from an organism’s
DNA. Biological sequence data provides a very power-
ful tool for analyzing evolutionary relationships. Many
biologists want to determine the DNA sequence of the

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. ‘To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-341-8/89/001 l/O304 $1.50

entire human genome. As more information becomes
available, it will become poss%le to determine impor-
tant characteristics of a human being by DNA sequence
analysis.

The four aIgorithms which we analyzed are the dy-
namic programming algorithm developed by Needle-
man, [Needleman 701, W unsch, and Sellers [Sellers 741,
Fickett’s algorithm [Fickett 841, a parallel algorithm
similar to Fickett’s algorithm, and an algorithm
which is similar to Wilbur and Lipman’s algorithm
[Wilbur 831. A detailed presentation of these algo-
rithms is given in [Iyengar 881.

2 Sequence Alignment

Sequence comparison algorithms are used in several dif-
ferent fields including molecular biology, string edit-
ing, speech processing, and codes and error control
[Kruskal 831 . H owever, the algorithms presented in this
paper are specifically intended for comparing biological
sequences, which include DNA sequences and proteins.
From a purely abstract point of view, a DNA sequence
is a string defined over an alphabet consisting of four
letters. A protein sequence is a string defined over an
alphabet consisting of twenty-one letters. These defini-
tions are sufficient to understand the four algorithms.
The following presentation assumes no prior knowledge
of biology. Of course, the reader with a strong biolog-
ical background will have much more insight into the
motivation behind the algorithms.

An alignme?Lt between two sequences defined over an
alphabet C is a matrix consisting of two rows. The up-
per row contains the source sequence 5’1 possibly inter-
spersed with null characters. The bottom row contains
the target sequence which may also be interspersed
with null characters. A null character is represented by
a “-“. A column consisting of two null characters is not
allowed. Let

2) y E 13.

304

A column
2 ll I -

is a deEelion . A column

i-1 Y

is an insertion . A column

X i 1 Y

is an identity if x = y; it is a substitution otherwise. A
gap of length k is a series of k consecutive insertions
or deletions.

DNA sequences are defined over the alphabet

c = {A,C,G,T}.

For example, one possible alignment betweeen the se-
quences

and

is Al :

CAT-GCATA

CATTGAA-A.

SI = CATGCATA

S, = CATTGAAA

A1 contains two gaps of length one, one substitution,
and six identities. Two sequences are homologous if
they are very similar and the degree of similarity is
much higher than what would be expected by chance.

3 Sequence Alignment Algo-
rit hms

3.1 Algorithm 1: The NWS algorithm

Needleman and Wunsch [Needleman 701 were two of
the first people to use computers for comparing biologi-
cal sequences. Their algorithm calculates an alignment
which maximizes the similarity between two sequences.
The dynamic programming algorithm of Sellers calcu-
lates an alignment which minimizes the difference be-
tween the two sequences. The two approaches calculate
the same alignment if parameters are selected appropri-
ately [Smith 811. W e will henceforth refer to the NWS
algorithm.

We caa assign a difference score d to each alignment:

i=l

where s is the number of substitutions, n is the number
of gaps, gsi is the size of gap i, and gp is a gap penalty
function assigning positive values to all gap sizes. We
will assume that gap penalties grow linearly with gap
sizes. Thus,

gp(gs) = gs * gap-penalty

where gap-pen&y > 1. An optimal alignment with re-
spect to a difference score is an alignment which pos-
sesses the lowest difference score.

The NWS algorithm calculates an optimal alignment
between Sr and S2 by memoizing optimal alignments
between all prefixes of Sr and SZ. Two matrices may be
allocated for storing alignments between prefixes and
their difference scores.

score-matriz[a, b]

contains the difference score of an optimal alignment
between the first a elements of Sr and the first b ele-
ments of Sa,

path,matrix[a, b]

contains the index of the previous cell in the alignment.
The alignment is constructed by following the indices
stored in path-matrix.

The 0th row corresponds to alignments possessing
gaps at the beginning of Sr. Thus,

score-matrix[O, a] = gp(a).

Similarly, the 0th column corresponds to alignments
possessing gaps at the beginning of Ss. Therefore,

score-matrix[b, 0] = gp(b).

The remainder of the matrix is calculated inductively
using the formula:
score-matrix[i, j] = min(score-matrix[i - 1, j]

+gap-penalty,
score,matrix[i, j - l]

+gap-penalty,

where

score-matrix[i - 1, j - l]
+distance(SI [i], SZ [j]))

distance(x,y) = 0 if x = y
= 1 if 2 # y.

The indices of the previous cell are stored in
path-nzatriz[i,j]. Aft er the matrices have been com-
pletely determined, an optimal alignment between the

305

1

2

Sl

Figure 1: This figure illustrates how alignment matrices are calculated in a parallel implementation of the NWS
algorithm. All cells belonging to the same diagonal wavefront may be determined concurrently once the previous
wavefront has been calculated.

entire sequences is constructed by following indices Fickett’s algorithm calculates alignment matrices se-
starting at path-.matriz[IS~ (, ISzl]. The time and space
complexity are b)oth O(IS1(* ISzl).

The data dependencies in the NWS algorithm de-
fine diagonal wavefronts across the alignment matrices.
Cells lying on t:he same wavefront may be calculated
concurrently once the previous wavefront has been de-
termined (figure 1). An ideal parallel implementation
runs in time 0((S1 I + IS,l) using min(IS1 (, \&I) proces-
sors [Edmiston 87].

3.2 Algorithm 2: Fickett’s algorithn~

Fickett’s algorithm requires the user to provide an up-
per bound cZ,,,~ for the difference score of an opti-
mal alignment. The algorithm assumes that the dif-
ference score of an optimal alignment does not exceed
d maz. Under this assumption, an optimal alignment
cannot pass through matrix cells which possess differ-
ence scores grea,ter than d,,,.

The key to the algorithm is to keep track of a group
of contiguous cells g at the beginning and end of a row
which contain difference scores greater than d,,,. An
optimal alignment cannot pass through any cells in g.
g consists of cells containing X’s in figure 2. Any align-
ment passing through a cell containing a circle must
also pass through g. Therefore, cells containing circles
do not have to be calculated.

quentially from lower to higher rows. If cells 0 through
h- of row i- 1 possess difference scores greater than d,,,,
cells 0 through k of row i do not have to be calculated.
Similarly, if cells j through IS21 of row i - 1 and cell
[i, j] of score-matrix are greater than d,,,, cells j + 1
through ISzJ f o row i do not have to be determined.

It is frequently necessary to determine the value of
a matrix cell, even though the value of one or two ad-
jacent cells which define its value are unknown. For
example, in figure 2, cell [i, lc + l] is defined by cells
[i,b], [i-l,h], and [i-l,Ic+l]. Cell [i-l,Ic+l] is the
only one of the three which has been calculated. Since
an optimal alignment cannot pass through cells [i, k] or
[i - 1, k], these cells are ignored. Thus,

score-matrix[i, k + l] = score-matrix[i - 1, k + l]+
gap-penalty.

If the score of an optimal alignment exceeds d,,,,
Fickett’s algorithm terminates without returning an
alignment. This is useful for comparing several se-
quences at a time and identifying pairs which are ho-
mologous. Fickett’s algorithm will spend less time com-
paring sequences which are not homologous than the
NWS algorithm because it will terminate after a row is
found in which the difference scores of all cells exceed
d naz-

Fickett’s algorithm can be improved slightly. If

score,matrix[i,j] > d,,,,

306

k j

i-l

i

Sl

Figure 2: Cells at the beginning and end of rows are pruned by Fickett’s algorithm. If the cells containing X’s
have been eliminated, the cells containing circles can also be eliminated.

Fickett’s algorithm concludes that an optimal align-
ment cannot pass through cell [i, j]. score-matriz[i, j]
is a lower bound on the difference score for an optimal
alignment passing through cell [it j]. If a greater lower
bound l;,j can be calculated, more matrix cells may be
ignored.

a1 = J&J - i

elements of & and

a2 = IS21 - J-

elements of 5’2 have not been added to the alignment
at the time cell [i, j] is determined. We may calculate
li,j by assuming that the remaining elements will con-
stitute min(al, ~42) identities and Ial - u2] insertions or
deletions. Thus,

li,j = scorenmtriz[i, j] + [Ul - Utl * gup~penaZty.

In the improved version of Fickett’s algorithm, we con-
clude that an optimal alignment cannot pass through
cell [i, j] if li,j > d,,,. Our implementation uses the
improved version of Fickett’s algorithm.

3.3 A parallel algorithm similar to Fick-
ett’s algorithm

Fickett’s algorithm calculates alignment matrices se-
quentially. It usually requires fewer total instructions
than the NWS algorithm. However, Fickett’s algorithm
contains far less parallelism.

A parallel algorithm which only calculates part of
the alignment matrices is obtained by filling in the ma-
trices along wavefronts instead of rows (figure 1). As
each wavefront is calculated, we keep track of contigu-
ous blocks of cells at the edges of the two previous
wavefronts which can be ignored because their differ-
ence scores are too high. Let wavefront Ic consist of all
matrix cells whose row and column indices sum to k. If
all cells along wavefronts a - 1 and k - 2 with row num-
bers greater than or equal to j possess difference scores
which are two high, we do not have to calculate any
matrix cells on wavefront L with row numbers exceed-
ing j. Similarly, if all cells along wavefronts h - 1 with
row numbers less than i and k - 2 with row numbers
less than i - 1 possess difference scores which are too
big, we do not have to calculate any cells on wavefront
k with row numbers less than i (figure 3).

3.4 A fast algorithm which does not al-
ways find an optimal aligmnent

Fast alignment algorithms exist which do not always
find optimal alignments. We have implemented an al-
gorithm which locates the matrix region containing the
largest number of exact k-tuple matches between Si and
5’2 and only calculates cells in this vicinity. A k-tuple
match between 5’1 and S2 is a sequence of k elements
which occurs in both 5’1 and 5’2.

Cells corresponding to exact k-tuple matches between
S1 and Sz form diagonal line segments across the align-

307

L

k-2

k-l

k

Figure 3: If the! cells on wavefronts k - 1 and k - 2 containing X’s possess difference scores which are too high,
the cells on wavefront k containing circles do not have to be calculated. This strategy is used by algorithm 3.

-I

1 s2

Figure 4: Cells corresponding to k-tuple matches form diagonal line segments across alignment matrices. Algorithm
4 only calculates matrix cells in the vicinity of the diagonals containing the most k-tuple matches.

308

ment matrix (figure 4). The best alignment is likely to
pass through the region of the matris containing the
most k-tuple matches. Our algorithm locates a group
of contiguous diagonals 9 containing the most lc-tuple
matches. It then uses dynamic programming to cal-
culate the best alignment which only passes through
diagonals which are no farther than wz diagonals from
the middle of g. wz is supplied by the user. The idea
of locating k-tuple matches to quickly calculate align-
ments which are not always optimal was suggested by
Wilbur and Lipman [Wilbur 831.

I<-tuple matches between S1 and Sz may be located
by utilizing a hash table of size]Ck] (where ICI is the
size of the alphabet over which S1 and Sz are defined).
Each of the ICI” different k-tuples is assigned to a differ-
ent bucket of the hash table. The index identifying the
position of each k-tuple belonging to Sr is stored in the
appropriate hash table bucket. After this has occurred,
k-tuples belonging to Sz are assigned to buckets in the
hash table. If a k-tuple in Sz is assigned to a bucket
containing an index into 5’1, a match has been found.

4 Results and Discussion

The four algorithms were implemented in the dataflow
language Id. The parallelism in Id is implicit. This
means that the programmer does not have to insert
any explicit parallel constructs in order to write a par-
allel program. Concurrency is detected automatically
by the compiler. This makes Id very easy to use. Pro-
gramming in Id is no more difficult than programming
in a sequential language.

We are currently in the process of building a dataflow
computer which executes Id programs. The results pre-
sented in this paper were produced by a dataflow simu-
lator. Our simulator is not powerful enough to align two
sequences with lengths significantly longer than 100.

‘Table 1 displays the statistics produced by the four
algorithms. The same set of sequences were used to
test each algorithm. In every case, algorithms 2, 3, and
4 constructed alignments using fewer instructions than
algorithm 1. However, algorithm 1 invariably possessed
a shorter critical path length. Furthermore, algorithm
1 is the easiest of the four to implement.

Algorithm 1 is a good choice if enough processors
are available because it contains the most pa.rallelism.
However, it may be possible to efficiently utilize the
processors on a parallel machine by constructing many
alignments concurrently. In this situation, each align-
ment does not have to he constructed by a parallel algo-
rithm. Any algorithm which requires fewer instructions

than the NWS algorithm will produce a faster solution,
even if a single iteration of the algorithm does not con-
tain much parallelism.

Algorithms 2 and 3 were tested using 3 different val-
ues for cl,,,. d,,, is an upper bound on the difference
score which is supplied by the user. The instruction
counts for both algorithms increase with d,,,. Max-
imum efficiency is obtained by making d,,, as small
as possible. However, both algorithms will terminate
without returning an alignment if the difference score
of an optimal alignment exceeds dmar.

Algorithm 3 contains significantly more parallelism
than algorithm 2. This becomes more noticeable when
longer sequences are compared with higher values spec-
ified for d,,,. For example, when sequences of length
15 are aligned and d,,, = G, the ratio of the critical
path length of algorithm 3 to that of algorithm 2 is .678.
By contrast, this ratio becomes .299 when sequences of
length 100 are aligned and d,,, = 40.

Algorithm 4 was tested using two different sets of val-
ues for 2~2. A trade-off exists between the instruction
count and the quality of alignments constructed by the
algorithm. If wz is small, a small number of matrix cells
are calculated. As w2 increases, more matrix cells are
calculated, and the instruction count increases. How-
ever, the probability of finding an optimal aIignment
also increases. Unlike the instruction count, the critical
path length does not change much with wz.

The lower instruction counts algorithms 2, 3, and 4
possess relative to algorithm 1 become more apparent
when longer sequences are compared. The differences
are not significant for sequences of lengths 15 or less.
When longer sequences are compared, algorithms 2, 3,
and 4 require significantly fewer instructions than algo-
rithm 1. This effect would become more pronounced if
we were able to compare sequences significantly longer
than 100.

5 Summary and Conclusions

None of the algorithms which we studied is unequivo-
cally better than the others. They all have strengths
and weaknesses. The correct algorithm to use clearly
depends upon the nature of the application.

The NWS algorithm contains the most parallelism.
It is also the easiest algorithm to implement. However,
it requires many instructions.

Fickett’s algorithm does not contain much paral-
lelism. However, it can align homologous sequences us-
ing much fewer instructions than the NWS algorithm.

309

7 Algorithm 1

Algorithm 2
d = 3 max
d - -4 ma2
d - -5 mcm
d -8 - maz

Algorithm 2
d mar - -6
d - -8 max

d = 10 mar
d mar = 20

Algorithm 2
d - -9 maz

d = 16 mox
d maz = 20
d = 40 mas

Algorithm 3
d - -3 max
d -4 - maz
d - -5 mar
d =8 maa:

Algorithm 3
d - -6 mas
d maa - -8

d = 10 ma2
d = 20 mar

Algorithm 3
d mm =9

--l d d d mm mar mm = = = 40 20 16

100 30 50 15 1,010,704 259,239 96,604 26,339 100.0% 100.0% 100.0% 100.0% 2,473 4,873 1,513 793 100.0% 100.0% 100.0% 100.0%

15 13,209 50.15% 2,283 287.9%
30 26,284 27.21% 4,518 298.6%
50 55,044 21.23% 9,016 364.6%

100 133,431 13.20% 21,152 434.1%

15 16,248 61.69% 2,681 338.1%
30 39,247 40.63% 6,242 412.6%
50 77,027 29.71% 11,956 483.5%

100 266,166 26.33% 38,996 800.2%

15 21,631 82.13% 3,381 426.4%
30 62,321 64.51% 9,306 615.1%
50 127,802 49.30% 18,746 758.0%

100 449,272 44.45% 63,602 1305%

15 17,151 65.12% 1,743 219.8%
30 34,358 35.57% 3,458 228.6%
50 68,033 26.24% 5,978 241.7%

100 158,199 15.65% 12,414 254.8%

15 20,010 75.97% 1,818 229.3%
30 46,584 48.22% 3,734 246.8%
50 88,733 34.23% 6,435 260.2%

100 283,185 28.02% 15,195 311.8%

15 95.30% 242.7% 25,100 1,925
100 50 30 455,632 136,560 68,360 45.08% 70.76% 52.68% 19,024 4,208 7,495 303.1% 390.4% 278.1%

15 22,150 84.10% 1,510 190.4%
30 49,578 51.32% 3,049 201.5%
50 86,915 33.53% 5,006 202.4%

100 209,968 20.77% 10,083 206.9%

15 26,115 99.15% 1,570 198.0%
30 60,032 62.14% 2,994 197.9%
50 105,138 40.56% 5,027 203.3%

100 265,269 26.25% 10,114 207.6%

Table 1: Simulation statistics for the four alignment algorithms. The critical path length is the longest chain of
operations which must be executed sequentially in any parallel implementation.

310

Figure 5: The parallelism profile which results when algorithm 1 aligns two homologous sequences of length 30.
The instruction count and critical path length are 96,604 and 1,513 respectively. The sequential tail beginning
just before 1000 on the X-axis results from constructing the alignment after the matrices have been determined.

1fJoo 111110 1ow .lllls ,000

Figure G: The parallelism profile which results when algorithm 2 aligns two homologous sequences of length 30
and d,,,.,, = 16. The instruction count and critical path length are 62,321 and 9,306 respectively.

311

1

Figure 7: The parallelism profile which results when algorithm 3 aligns two homologous sequences of length 3C
and d,,, = 16. The instruction count and critical path length are 68,360 and 4,208 respec.tively.

1

Figure 8: The parallelism profile which results when algorithm 4 aligns two homologous sequences of length 3C
and 202 = 4. The instruction count and critical path length are 60,032 and 2,994 respectively. k-tuple matches art
located using hash tables from 0 to about 3S0 time steps. The matrix region containing the most k-tuple matche:
is located from 380 to about 1080 time steps. Matrix cells surrounding this region are calculated by dyna.mic
programming from 1080 to about 2100 time steps, The alignment is constructed from the matrices from 2100 tc
2,994 time steps.

312

It is a good algorithm to use for searching through a
database of sequences and locating pairs which are ho-
mologous. Parallelism may be obtained by aligning sev-
eral pairs of sequences at the same time even though a
single iteration is sequential.

The third algorithm which we implemented uses some
of Fickett’s ideas. It contains significantly more par-
allelism than Fickett’s algorithm. Furthermore, it re-
quires about the same number of instructions. Both al-
gorithms will not return an alignment if the sequences
differ by too much.

The fourth algorithm we implemented does not al-
ways find an optimal alignment. However, it finds a
good alignment in the vast majority of cases. Unlike
algorithms 2 and 3, it always returns an alignment. Fur-
thermore, it requires fewer instructions than the NWS
algorithm and contains more parallelism than Fickett’s
algorithm.

All four algorithms were encoded in the dataflow lan-
guage Id. The parallelism in Id is implicit. This greatly
simplifies the programmer’s job. Explicitly paralleliz-
ing the alignment algorithms is a fairly significant task.
The NWS algorithm is the easiest of the four algorithms
to parallelize. However, implementing the NWS algo-
rithm efficiently on a SIMD computer such as a Con-
nection Machine requires a lot of work [Lander 881. The
other algorithms are even harder to parallelize explicitly
because of their added complexity. An Id programmer
does not encounter any difficulties which a sequential
programmer would not also face. He is totally insu-
lated from the characteristics of the machine executing
his program.

Acknowledgements: The simulation tools for gener-
ating the statistics presented in this paper were devel-
oped by the Computation Structures Group at MIT.
Rishiyur S. Nikhil made many useful suggestions which
improved the quality of this research. The author has
been supported in part by a graduate fellowship from
the National Science Foundation.

References

[Edmiston 871 Edmiston, E., and Wagner, R. A.
Parallelization of the Dynamic Pro-
gramming Algorithm for Comparison
of Sequences. In Proceedings of Ihe

1987 International Conference on Par-
allel Processing. pp. 78-80, Penn State
Press, Pennsylvania.

[Fickett 841

[Iyengar 881

[Kruskal 831

[Lander 881

[Needleman 701

[Nikhil 881

[Sellers 741

[Smith 811

[Wilbur 831

Fickett, J. W. Fast Optimal Align-
ment. In Nucleic Acids Research 18:l.
1984, pp. 175-179.

Iyengar, A. K. Parallel DNA Sequence
Analysis. Master’s Thesis, Technical
Report TR-428, Laboratory for Com-
puter Science, Massachusetts Institute
of Technology. Cambridge, MA 02139,
1988.

Kruskal, J. B. An Overview of Se-
quence Comparison, Time Warps,
String Edits, and Macromolecules. In
Siam Review 25:2. April 1983, pp. 201-
237.

Lander, E., Mesirov, J., and Taylor,
W. Protein Sequence Comparison on
a Data Parallel Computer. In Proceed-
ings of the 1988 International Confer-
ence on Parallel Processing, Volume 3.
pp. 257-263, Penn State Press, Penn-
sylvania.

Needleman, S. B., and C. D. Wunsch.
A General Method Applicable to the
Search for Similarities in the Amino
Acid Sequences of Two Proteins. In
Journal of Molecular Biology 48. 1970,
pp. 443-453.

Nikhil, R. S. Id Version 88.1 Reference
Manual. CSG Memo 284, M. I. T. Lab-
oratory for Computer Science, August
29, 1988.

Sellers, P. H. On the Theory and Com-
putation of Evolutionary Distances.
SIAM J. Appl. Math. 26:4. June 1974,
pp. 787-793.

Smith, T. F., et. al. Compara-
tive Biosequence Metrics. Journal of
Molecular Evolution 18. 1981, pp. 38-
46.

Wilbur, W. J., and D. J. Lipman.
Rapid Similarity Searches of Nucleic
Acid and Protein Data Banks, Proc.
Natl. Acad. Sci. USA 80. February
1983, pp. 726-730.

313

