
Parallel Characteristics of Sequence Alignment Algorithms 

Arun I<. Iyengar 
Laboratory for Computer Science 

Massachusetts Institute of Technology 
Cambridge, MA 02139 

Abstract 

Parallel algorithms for analyzing DNA and protein se- 
quences are becoming increasingly important as se- 
quence data continues to grow. This paper examines 
the parallel characteristics of four sequence alignment 
algorithms. The four algorithms presented are the dy- 
namic programming algorithm developed by Needle- 
man, Wunsch, and Sellers (the NWS algorithm), Fick- 
ett’s algorithm, a parallel algorithm using some of Fick- 
ett’s ideas, and an algorithm which uses some of Wilbur 
and Lipman’s ideas for constructing alignments which 
are not always optimal. The NWS algorithm contains 
the most parallelism but also does more work than any 
of the other algorithms which we studied. Fickett’s 
algorithm contains the least parallelism. However, a 
parallel algorithm which requires significantly fewer in- 
structions than the NWS algorithm is obtained by mod- 
ifying Fickett’s algorithm. The algorithms have been 
implemented for a dataflow computer in the dataflow 
language Id. 

1 Introduction 

This paper analyzes the parallel characteristics of four 
algorithms for aligning DNA and protein sequences. Bi- 
ological sequence data is accumulating very rapidly. In- 
creasingly powerful computers will be needed for ana- 
lyzing DNA and proteins as databases expand. 

All living things transmit genetic information 
through DNA. Important structural and functional 
characteristics can be, determined from an organism’s 
DNA. Biological sequence data provides a very power- 
ful tool for analyzing evolutionary relationships. Many 
biologists want to determine the DNA sequence of the 
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entire human genome. As more information becomes 
available, it will become poss%le to determine impor- 
tant characteristics of a human being by DNA sequence 
analysis. 

The four aIgorithms which we analyzed are the dy- 
namic programming algorithm developed by Needle- 
man, [Needleman 701, W unsch, and Sellers [Sellers 741, 
Fickett’s algorithm [Fickett 841, a parallel algorithm 
similar to Fickett’s algorithm, and an algorithm 
which is similar to Wilbur and Lipman’s algorithm 
[Wilbur 831. A detailed presentation of these algo- 
rithms is given in [Iyengar 881. 

2 Sequence Alignment 

Sequence comparison algorithms are used in several dif- 
ferent fields including molecular biology, string edit- 
ing, speech processing, and codes and error control 
[Kruskal 831 . H owever, the algorithms presented in this 
paper are specifically intended for comparing biological 
sequences, which include DNA sequences and proteins. 
From a purely abstract point of view, a DNA sequence 
is a string defined over an alphabet consisting of four 
letters. A protein sequence is a string defined over an 
alphabet consisting of twenty-one letters. These defini- 
tions are sufficient to understand the four algorithms. 
The following presentation assumes no prior knowledge 
of biology. Of course, the reader with a strong biolog- 
ical background will have much more insight into the 
motivation behind the algorithms. 

An alignme?Lt between two sequences defined over an 
alphabet C is a matrix consisting of two rows. The up- 
per row contains the source sequence 5’1 possibly inter- 
spersed with null characters. The bottom row contains 
the target sequence which may also be interspersed 
with null characters. A null character is represented by 
a “-“. A column consisting of two null characters is not 
allowed. Let 

2 ) y E 13. 

304 



A column 
2 ll I - 

is a deEelion . A column 

i-1 Y 

is an insertion . A column 

X i 1 Y 

is an identity if x = y; it is a substitution otherwise. A 
gap of length k is a series of k consecutive insertions 
or deletions. 

DNA sequences are defined over the alphabet 

c = {A,C,G,T}. 

For example, one possible alignment betweeen the se- 
quences 

and 

is Al : 

CAT-GCATA 

CATTGAA-A. 

SI = CATGCATA 

S, = CATTGAAA 

A1 contains two gaps of length one, one substitution, 
and six identities. Two sequences are homologous if 
they are very similar and the degree of similarity is 
much higher than what would be expected by chance. 

3 Sequence Alignment Algo- 
rit hms 

3.1 Algorithm 1: The NWS algorithm 

Needleman and Wunsch [Needleman 701 were two of 
the first people to use computers for comparing biologi- 
cal sequences. Their algorithm calculates an alignment 
which maximizes the similarity between two sequences. 
The dynamic programming algorithm of Sellers calcu- 
lates an alignment which minimizes the difference be- 
tween the two sequences. The two approaches calculate 
the same alignment if parameters are selected appropri- 
ately [Smith 811. W e will henceforth refer to the NWS 
algorithm. 

We caa assign a difference score d to each alignment: 

i=l 

where s is the number of substitutions, n is the number 
of gaps, gsi is the size of gap i, and gp is a gap penalty 
function assigning positive values to all gap sizes. We 
will assume that gap penalties grow linearly with gap 
sizes. Thus, 

gp(gs) = gs * gap-penalty 

where gap-pen&y > 1. An optimal alignment with re- 
spect to a difference score is an alignment which pos- 
sesses the lowest difference score. 

The NWS algorithm calculates an optimal alignment 
between Sr and S2 by memoizing optimal alignments 
between all prefixes of Sr and SZ. Two matrices may be 
allocated for storing alignments between prefixes and 
their difference scores. 

score-matriz[a, b] 

contains the difference score of an optimal alignment 
between the first a elements of Sr and the first b ele- 
ments of Sa, 

path,matrix[a, b] 

contains the index of the previous cell in the alignment. 
The alignment is constructed by following the indices 
stored in path-matrix. 

The 0th row corresponds to alignments possessing 
gaps at the beginning of Sr. Thus, 

score-matrix[O, a] = gp(a). 

Similarly, the 0th column corresponds to alignments 
possessing gaps at the beginning of Ss. Therefore, 

score-matrix[b, 0] = gp(b). 

The remainder of the matrix is calculated inductively 
using the formula: 
score-matrix[i, j] = min(score-matrix[i - 1, j] 

+gap-penalty, 
score,matrix[i, j - l] 

+gap-penalty, 

where 

score-matrix[i - 1, j - l] 
+distance(SI [i], SZ [j])) 

distance(x,y) = 0 if x = y 
= 1 if 2 # y. 

The indices of the previous cell are stored in 
path-nzatriz[i,j]. Aft er the matrices have been com- 
pletely determined, an optimal alignment between the 

305 



1 

2 

Sl 

Figure 1: This figure illustrates how alignment matrices are calculated in a parallel implementation of the NWS 
algorithm. All cells belonging to the same diagonal wavefront may be determined concurrently once the previous 
wavefront has been calculated. 

entire sequences is constructed by following indices Fickett’s algorithm calculates alignment matrices se- 
starting at path-.matriz[IS~ (, ISzl]. The time and space 
complexity are b)oth O(IS1( * ISzl). 

The data dependencies in the NWS algorithm de- 
fine diagonal wavefronts across the alignment matrices. 
Cells lying on t:he same wavefront may be calculated 
concurrently once the previous wavefront has been de- 
termined (figure 1). An ideal parallel implementation 
runs in time 0( (S1 I + IS,l) using min( IS1 (, \&I) proces- 
sors [Edmiston 87]. 

3.2 Algorithm 2: Fickett’s algorithn~ 

Fickett’s algorithm requires the user to provide an up- 
per bound cZ,,,~ for the difference score of an opti- 
mal alignment. The algorithm assumes that the dif- 
ference score of an optimal alignment does not exceed 
d maz. Under this assumption, an optimal alignment 
cannot pass through matrix cells which possess differ- 
ence scores grea,ter than d,,,. 

The key to the algorithm is to keep track of a group 
of contiguous cells g at the beginning and end of a row 
which contain difference scores greater than d,,,. An 
optimal alignment cannot pass through any cells in g. 
g consists of cells containing X’s in figure 2. Any align- 
ment passing through a cell containing a circle must 
also pass through g. Therefore, cells containing circles 
do not have to be calculated. 

quentially from lower to higher rows. If cells 0 through 
h- of row i- 1 possess difference scores greater than d,,,, 
cells 0 through k of row i do not have to be calculated. 
Similarly, if cells j through IS21 of row i - 1 and cell 
[i, j] of score-matrix are greater than d,,,, cells j + 1 
through ISzJ f o row i do not have to be determined. 

It is frequently necessary to determine the value of 
a matrix cell, even though the value of one or two ad- 
jacent cells which define its value are unknown. For 
example, in figure 2, cell [i, lc + l] is defined by cells 
[i,b], [i-l,h], and [i-l,Ic+l]. Cell [i-l,Ic+l] is the 
only one of the three which has been calculated. Since 
an optimal alignment cannot pass through cells [i, k] or 
[i - 1, k], these cells are ignored. Thus, 

score-matrix[i, k + l] = score-matrix[i - 1, k + l]+ 
gap-penalty. 

If the score of an optimal alignment exceeds d,,,, 
Fickett’s algorithm terminates without returning an 
alignment. This is useful for comparing several se- 
quences at a time and identifying pairs which are ho- 
mologous. Fickett’s algorithm will spend less time com- 
paring sequences which are not homologous than the 
NWS algorithm because it will terminate after a row is 
found in which the difference scores of all cells exceed 
d naz- 

Fickett’s algorithm can be improved slightly. If 

score,matrix[i,j] > d,,,, 
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Figure 2: Cells at the beginning and end of rows are pruned by Fickett’s algorithm. If the cells containing X’s 
have been eliminated, the cells containing circles can also be eliminated. 

Fickett’s algorithm concludes that an optimal align- 
ment cannot pass through cell [i, j]. score-matriz[i, j] 
is a lower bound on the difference score for an optimal 
alignment passing through cell [it j]. If a greater lower 
bound l;,j can be calculated, more matrix cells may be 
ignored. 

a1 = J&J - i 

elements of & and 

a2 = IS21 - J- 

elements of 5’2 have not been added to the alignment 
at the time cell [i, j] is determined. We may calculate 
li,j by assuming that the remaining elements will con- 
stitute min(al, ~42) identities and Ial - u2 ] insertions or 
deletions. Thus, 

li,j = scorenmtriz[i, j] + [Ul - Utl * gup~penaZty. 

In the improved version of Fickett’s algorithm, we con- 
clude that an optimal alignment cannot pass through 
cell [i, j] if li,j > d,,,. Our implementation uses the 
improved version of Fickett’s algorithm. 

3.3 A parallel algorithm similar to Fick- 
ett’s algorithm 

Fickett’s algorithm calculates alignment matrices se- 
quentially. It usually requires fewer total instructions 
than the NWS algorithm. However, Fickett’s algorithm 
contains far less parallelism. 

A parallel algorithm which only calculates part of 
the alignment matrices is obtained by filling in the ma- 
trices along wavefronts instead of rows (figure 1). As 
each wavefront is calculated, we keep track of contigu- 
ous blocks of cells at the edges of the two previous 
wavefronts which can be ignored because their differ- 
ence scores are too high. Let wavefront Ic consist of all 
matrix cells whose row and column indices sum to k. If 
all cells along wavefronts a - 1 and k - 2 with row num- 
bers greater than or equal to j possess difference scores 
which are two high, we do not have to calculate any 
matrix cells on wavefront L with row numbers exceed- 
ing j. Similarly, if all cells along wavefronts h - 1 with 
row numbers less than i and k - 2 with row numbers 
less than i - 1 possess difference scores which are too 
big, we do not have to calculate any cells on wavefront 
k with row numbers less than i (figure 3). 

3.4 A fast algorithm which does not al- 
ways find an optimal aligmnent 

Fast alignment algorithms exist which do not always 
find optimal alignments. We have implemented an al- 
gorithm which locates the matrix region containing the 
largest number of exact k-tuple matches between Si and 
5’2 and only calculates cells in this vicinity. A k-tuple 
match between 5’1 and S2 is a sequence of k elements 
which occurs in both 5’1 and 5’2. 

Cells corresponding to exact k-tuple matches between 
S1 and Sz form diagonal line segments across the align- 
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Figure 3: If the! cells on wavefronts k - 1 and k - 2 containing X’s possess difference scores which are too high, 
the cells on wavefront k containing circles do not have to be calculated. This strategy is used by algorithm 3. 
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Figure 4: Cells corresponding to k-tuple matches form diagonal line segments across alignment matrices. Algorithm 
4 only calculates matrix cells in the vicinity of the diagonals containing the most k-tuple matches. 
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ment matrix (figure 4). The best alignment is likely to 
pass through the region of the matris containing the 
most k-tuple matches. Our algorithm locates a group 
of contiguous diagonals 9 containing the most lc-tuple 
matches. It then uses dynamic programming to cal- 
culate the best alignment which only passes through 
diagonals which are no farther than wz diagonals from 
the middle of g. wz is supplied by the user. The idea 
of locating k-tuple matches to quickly calculate align- 
ments which are not always optimal was suggested by 
Wilbur and Lipman [Wilbur 831. 

I<-tuple matches between S1 and Sz may be located 
by utilizing a hash table of size ]Ck] (where ICI is the 
size of the alphabet over which S1 and Sz are defined). 
Each of the ICI” different k-tuples is assigned to a differ- 
ent bucket of the hash table. The index identifying the 
position of each k-tuple belonging to Sr is stored in the 
appropriate hash table bucket. After this has occurred, 
k-tuples belonging to Sz are assigned to buckets in the 
hash table. If a k-tuple in Sz is assigned to a bucket 
containing an index into 5’1, a match has been found. 

4 Results and Discussion 

The four algorithms were implemented in the dataflow 
language Id. The parallelism in Id is implicit. This 
means that the programmer does not have to insert 
any explicit parallel constructs in order to write a par- 
allel program. Concurrency is detected automatically 
by the compiler. This makes Id very easy to use. Pro- 
gramming in Id is no more difficult than programming 
in a sequential language. 

We are currently in the process of building a dataflow 
computer which executes Id programs. The results pre- 
sented in this paper were produced by a dataflow simu- 
lator. Our simulator is not powerful enough to align two 
sequences with lengths significantly longer than 100. 

‘Table 1 displays the statistics produced by the four 
algorithms. The same set of sequences were used to 
test each algorithm. In every case, algorithms 2, 3, and 
4 constructed alignments using fewer instructions than 
algorithm 1. However, algorithm 1 invariably possessed 
a shorter critical path length. Furthermore, algorithm 
1 is the easiest of the four to implement. 

Algorithm 1 is a good choice if enough processors 
are available because it contains the most pa.rallelism. 
However, it may be possible to efficiently utilize the 
processors on a parallel machine by constructing many 
alignments concurrently. In this situation, each align- 
ment does not have to he constructed by a parallel algo- 
rithm. Any algorithm which requires fewer instructions 

than the NWS algorithm will produce a faster solution, 
even if a single iteration of the algorithm does not con- 
tain much parallelism. 

Algorithms 2 and 3 were tested using 3 different val- 
ues for cl,,,. d,,, is an upper bound on the difference 
score which is supplied by the user. The instruction 
counts for both algorithms increase with d,,,. Max- 
imum efficiency is obtained by making d,,, as small 
as possible. However, both algorithms will terminate 
without returning an alignment if the difference score 
of an optimal alignment exceeds dmar. 

Algorithm 3 contains significantly more parallelism 
than algorithm 2. This becomes more noticeable when 
longer sequences are compared with higher values spec- 
ified for d,,,. For example, when sequences of length 
15 are aligned and d,,, = G, the ratio of the critical 
path length of algorithm 3 to that of algorithm 2 is .678. 
By contrast, this ratio becomes .299 when sequences of 
length 100 are aligned and d,,, = 40. 

Algorithm 4 was tested using two different sets of val- 
ues for 2~2. A trade-off exists between the instruction 
count and the quality of alignments constructed by the 
algorithm. If wz is small, a small number of matrix cells 
are calculated. As w2 increases, more matrix cells are 
calculated, and the instruction count increases. How- 
ever, the probability of finding an optimal aIignment 
also increases. Unlike the instruction count, the critical 
path length does not change much with wz. 

The lower instruction counts algorithms 2, 3, and 4 
possess relative to algorithm 1 become more apparent 
when longer sequences are compared. The differences 
are not significant for sequences of lengths 15 or less. 
When longer sequences are compared, algorithms 2, 3, 
and 4 require significantly fewer instructions than algo- 
rithm 1. This effect would become more pronounced if 
we were able to compare sequences significantly longer 
than 100. 

5 Summary and Conclusions 

None of the algorithms which we studied is unequivo- 
cally better than the others. They all have strengths 
and weaknesses. The correct algorithm to use clearly 
depends upon the nature of the application. 

The NWS algorithm contains the most parallelism. 
It is also the easiest algorithm to implement. However, 
it requires many instructions. 

Fickett’s algorithm does not contain much paral- 
lelism. However, it can align homologous sequences us- 
ing much fewer instructions than the NWS algorithm. 

309 



7 Algorithm 1 

Algorithm 2 
d = 3 max 
d - -4 ma2 
d - -5 mcm 
d -8 - maz 

Algorithm 2 
d mar - -6 
d - -8 max 

d = 10 mar 
d mar = 20 

Algorithm 2 
d - -9 maz 

d = 16 mox 
d maz = 20 
d = 40 mas 

Algorithm 3 
d - -3 max 
d -4 - maz 
d - -5 mar 
d =8 maa: 

Algorithm 3 
d - -6 mas 
d maa - -8 

d = 10 ma2 
d = 20 mar 

Algorithm 3 
d mm =9 

--l d d d mm mar mm = = = 40 20 16 

100 30 50 15 1,010,704 259,239 96,604 26,339 100.0% 100.0% 100.0% 100.0% 2,473 4,873 1,513 793 100.0% 100.0% 100.0% 100.0% 

15 13,209 50.15% 2,283 287.9% 
30 26,284 27.21% 4,518 298.6% 
50 55,044 21.23% 9,016 364.6% 

100 133,431 13.20% 21,152 434.1% 

15 16,248 61.69% 2,681 338.1% 
30 39,247 40.63% 6,242 412.6% 
50 77,027 29.71% 11,956 483.5% 

100 266,166 26.33% 38,996 800.2% 

15 21,631 82.13% 3,381 426.4% 
30 62,321 64.51% 9,306 615.1% 
50 127,802 49.30% 18,746 758.0% 

100 449,272 44.45% 63,602 1305% 

15 17,151 65.12% 1,743 219.8% 
30 34,358 35.57% 3,458 228.6% 
50 68,033 26.24% 5,978 241.7% 

100 158,199 15.65% 12,414 254.8% 

15 20,010 75.97% 1,818 229.3% 
30 46,584 48.22% 3,734 246.8% 
50 88,733 34.23% 6,435 260.2% 

100 283,185 28.02% 15,195 311.8% 

15 95.30% 242.7% 25,100 1,925 
100 50 30 455,632 136,560 68,360 45.08% 70.76% 52.68% 19,024 4,208 7,495 303.1% 390.4% 278.1% 

15 22,150 84.10% 1,510 190.4% 
30 49,578 51.32% 3,049 201.5% 
50 86,915 33.53% 5,006 202.4% 

100 209,968 20.77% 10,083 206.9% 

15 26,115 99.15% 1,570 198.0% 
30 60,032 62.14% 2,994 197.9% 
50 105,138 40.56% 5,027 203.3% 

100 265,269 26.25% 10,114 207.6% 

Table 1: Simulation statistics for the four alignment algorithms. The critical path length is the longest chain of 
operations which must be executed sequentially in any parallel implementation. 
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Figure 5: The parallelism profile which results when algorithm 1 aligns two homologous sequences of length 30. 
The instruction count and critical path length are 96,604 and 1,513 respectively. The sequential tail beginning 
just before 1000 on the X-axis results from constructing the alignment after the matrices have been determined. 
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Figure G: The parallelism profile which results when algorithm 2 aligns two homologous sequences of length 30 
and d,,,.,, = 16. The instruction count and critical path length are 62,321 and 9,306 respectively. 
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1 

Figure 7: The parallelism profile which results when algorithm 3 aligns two homologous sequences of length 3C 
and d,,, = 16. The instruction count and critical path length are 68,360 and 4,208 respec.tively. 

1 

Figure 8: The parallelism profile which results when algorithm 4 aligns two homologous sequences of length 3C 
and 202 = 4. The instruction count and critical path length are 60,032 and 2,994 respectively. k-tuple matches art 
located using hash tables from 0 to about 3S0 time steps. The matrix region containing the most k-tuple matche: 
is located from 380 to about 1080 time steps. Matrix cells surrounding this region are calculated by dyna.mic 
programming from 1080 to about 2100 time steps, The alignment is constructed from the matrices from 2100 tc 
2,994 time steps. 
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It is a good algorithm to use for searching through a 
database of sequences and locating pairs which are ho- 
mologous. Parallelism may be obtained by aligning sev- 
eral pairs of sequences at the same time even though a 
single iteration is sequential. 

The third algorithm which we implemented uses some 
of Fickett’s ideas. It contains significantly more par- 
allelism than Fickett’s algorithm. Furthermore, it re- 
quires about the same number of instructions. Both al- 
gorithms will not return an alignment if the sequences 
differ by too much. 

The fourth algorithm we implemented does not al- 
ways find an optimal alignment. However, it finds a 
good alignment in the vast majority of cases. Unlike 
algorithms 2 and 3, it always returns an alignment. Fur- 
thermore, it requires fewer instructions than the NWS 
algorithm and contains more parallelism than Fickett’s 
algorithm. 

All four algorithms were encoded in the dataflow lan- 
guage Id. The parallelism in Id is implicit. This greatly 
simplifies the programmer’s job. Explicitly paralleliz- 
ing the alignment algorithms is a fairly significant task. 
The NWS algorithm is the easiest of the four algorithms 
to parallelize. However, implementing the NWS algo- 
rithm efficiently on a SIMD computer such as a Con- 
nection Machine requires a lot of work [Lander 881. The 
other algorithms are even harder to parallelize explicitly 
because of their added complexity. An Id programmer 
does not encounter any difficulties which a sequential 
programmer would not also face. He is totally insu- 
lated from the characteristics of the machine executing 
his program. 
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