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Abstract

Sequence comparison with affine gap costs is a prob-
lem that is readily parallelizable on simple single-
instruction, multiple-data stream (SIMD) parallel
processors using only constant space per process-
ing element. Unfortunately, the twin problem of
sequence alignment, finding the optimal character-
by-character correspondence between two sequences,
is more complicated. While the innovative O(n?)-
time and O(n)-space serial algorithm has been paral-
lelized for multiple-instruction, multiple-data stream
(MIMD) computers with only a communication-time
slowdown, typically O(log n), it is not suitable for
hardware-efficient SIMD parallel processors with only
local communication. This paper proposes several
methods of computing sequence alignments with lim-
ited memory per processing element. The algorithms
are also well-suited to serial implementation. The sim-
pler algorithms feature, for an arbitrary integer L, a
factor of L slowdown in exchange for reducing space
requirements from O(n) to O( {/n) per processing ele-
ment. Using this result, we describe an O(nlog n) par-
allel time algorithm that requires O(logn) space per
processing element on O(r) SIMD processing elements
with only a mesh or linear interconnection network.

Introduction

Sequence comparison and alignment are common and
compute-intensive tasks which benefit from space-
efficient parallelization. A sequence might consist of
nucleic acids in a gene fragment, amino acids in a pro-
tein, characters in a string, or lines in a file. Sequence
comparison rates the difference or similarity between
two sequences. For the most related sequences, one
then wants to see an alignment, showing where the
sequences are similar, by graphically lining up match-
ing elements, and how they differ, shown by gaps and
mismatches. The most informative alignments have a
maximum of matching and, equivalently, a minimum
of gaps and mismatches. The rating returned as the
comparison result measures the extent to which this
can be accomplished.

Good alignments and sequence comparisons come
from solutions of an appropriately chosen optimization
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problem. The problem formulation defines a set of edit
primitives, including replace, insert, and delete, and
assigns them values or costs. Optimization then max-
imizes the total match value (Needleman & Wunsch
1970) or minimizes the total cost of mismatches and
insert and delete gaps. Selecting an appropriate cost
function can result in better alignments. There are
many ways to develop a cost metric including using
linear hidden Markov models (Krogh et al. 1994).
Dynamic programming efficiently organizes se-
quence comparison by comparing shorter subsequences
first, so their costs can be made available in a table
(like Figure 1) for the next longer subsequence com-
parisons. Comparison normally starts from the begin-
ning or end of the sequences, or even both (Hirschberg
1975). The final entry becomes the comparison rating.
Exact sequence comparison (with or without gaps) is
an O(n?)-time dynamic programming algorithm: se-
rial machines require time proportional to the square
of the sequence length to solve the problem.! Distance
calculation is governed by a simple recurrence. The
cost of transforming a reference string b into another
string a is the solution of a recurrence whose core is:
ci—1j-1 + dist(a;,b;) match
cGj = min{ Cio1,j + dist(a;,¢) insert
Cij-1 + dist(4,b;) delete,

where dist(a;,b;) is the cost of matching a; to b;,
dist(a;, ¢) is the gap cost of not matching a; to any
character in b,and dist(¢, b;) is the cost of not match-
ing b; to any character in a. [Edit distance, the
number of insertions or deletions required to change
one sequence to another, can be calculated by setting
dist(a;, ¢) = dist(¢,b;) = 1, and dist(a;, b;) = 0 if
a; = b; and 2 otherwise. The recurrence can be effi-
ciently mapped to a linear processor array in several
ways, the most obvious being to assign the j-th col-
umn of the dynamic programming matrix and the j-th
character of b to the j-th processor.

!Masek and Paterson describe an O(n?/log ) algorithm
for strings of equal length from a finite alphabet with re-
strictions on the cost function, but it has a large constant
factor and is not amenable to parallelization (Masek & Pa-
terson 1983).
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Figure 1: Dynamic programming example to find least
cost edit of “BACKTRACK” into “TRACEBACK”
using Sellers’ evolutionary distance metric (Sellers
1974). Matches propagate the cost diagonally, in-
sert/delete move horizontally/vertically with a cost of
1 per character. On a parallel machine with one pro-
cessor per column, the dotted lines are isotimes. Below
the dynamic programming table are two possible align-
ments and an illustration of the data dependencies.

Sequence comparison using affine gap penalties in-
volves three interconnected recurrences of a similar
form. The extra cost for starting a sequence of inser-
tions or deletions will, for example, make the second
alignment of Figure 1 preferred over the alignment with
three gaps. In the most general form (a profile or linear
hidden Markov model (Gribskov, Liithy, & Eisenberg
1990; Krogh et al. 1994)), all transition costs between
the three states (in a run of matches, insertions, or
deletions) and character costs are position-dependent:
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An alignment based on a given cost function is the
reconstruction of an optimal path through the dynamic
programming matrix. The standard means of recon-
structing the path is to store the choices made in each
minimization during the forward pass, and then use
these choices to find an optimal path from c£+17n+1

to C{)j,o during the backward or traceback phase. The
traceback begins and ends in ¢ columns. This path
corresponds to the alignment of the sequence compari-
son. Storing these choices will require at most one byte
per (i,5) cell. However, having to store one byte for
each comparison requires O(n?) space, leading to the
need for more space-efficient alternatives.

We have two primary implementation targets: hid-
den Markov modeling code executed on a general-
purpose array processor, and a new parallel pro-
cessor currently under development. The most
computationally-intensive step of the former is a
sequence of training iterations that requires an
alignment-like calculation on the dynamic program-
ming matrix. This calculation is currently constrained
by the amount of local memory per processing element
(64 Kbytes). The new parallel processor will have tiny
amounts of local memory but, as a result of this work,
be able to perform sequence alignment and even hidden
Markov model training.

Related Work

Hirschberg (1975) first discovered a linear-space algo-
rithm for sequence alignment, which was then popu-
larized and extended by Myers and Miller (1988). In
reducing space from O(n?) to O(n), these algorithms
introduce a small constant (about 2) slowdown to the
O(n?) time algorithm. The core of these algorithms
is a divide-and-conquer strategy in which an optimal
midpoint of an n X n alignment is computed by con-
sidering column n/2 as computed by both the forward
cost function on the sequences and the inverse cost
function on the transposed sequences. At each point
along this column, the sum of the forward and reverse
costs will be the minimum cost of an alignment pass-
ing through that point. Minimizing over all members
of the column will produce a point through which the
optimal alignment will pass. This enables the division
of the problem into two subproblems of combined size
n?/2, which can then be solved recursively.
Divide-and-conquer algorithms are well suited to
MIMD (multiple instruction stream, multiple data
stream) parallel processors such as the Cray T3D or
Thinking Machines CM-5. Edmiston, Core, Saltz, and
Smith (1988) proposed an extension to Hirschberg’s
algorithm for use on parallel processors by dividing
the problem into H segments rather than Hirschberg’s
original two segments. Huang (1989) further noted
that if one considers partitioning along a pair of di-
agonals rather than a column, the problem will be re-
duced to equally-sized subproblems, a critical issue in
creating a load-balanced parallel algorithm that uses



a constant amount of memory per processing element.
That is, if the ¢ + j = n diagonal is considered, the
minimizing point in that diagonal, (¢, ;') will divide
the problem into an upper 7 x j' segment and a lower
(n—1i") x (n—j") =i x j segment.

In related work, Huang, Hardison, and Miller ap-
plied Hirschberg’s techniques to design a linear-space
algorithm for local similarity which was similarly par-
allelized (Huang, Hardison, & Miller 1990; Huang et
al. 1992).

Huang’s parallelization of Hirschberg’s algorithm,
and the related parallelization of Edmiston’s algo-
rithm, is best suited to MIMD parallel processing with
shared memory or unit-time message passing systems.
Although the workload is evenly partitioned in these
parallelizations, after an (¢, j') determination, the se-
quences must be re-partitioned into half-sized subsets
with the first ¢’ and j’ characters of each sequence going
to the first processor of one half the PEs over several
time steps, and the remainder going to the first pro-
cessor of the other half. A simple ring network would
enable this for the first partitioning, but the recursive
partitionings will require a multitude of sub-rings or,
in fact, a fully-connected graph.

With the goal of O(n/P) memory in each of P
processing elements, copies of the sequences can-
not be stored in each PE, meaning that the data
must be moved though the parallel processor. In
practice, because of the expense of full crossbar
switches, the best that real parallel machines can do is
O(log P) per message, turning the parallelization into
an O((n?/P)log P) method requiring O(n/P) space
per PE, or O(nlogn) time and O(1) space per PE,
with the number of PEs proportional to the lengths
of the sequences. (For some parallel processors, the
communication coefficient is small, but this does not
change the asymptotics.)

The mapping becomes worse on consideration of the
minimal SIMD machines that can compute cost func-
tions so efficiently. On a square mesh of processing el-
ements, communication time for arbitrary patterns us-
ing the nearest-neighbor connections is O(+/P), while
on a linear array the cost is O(P), producing execu-
tion times of O(n!-%) and O(n?) on these architectures
when P = O(n).

With this in mind, we have turned to the con-
sideration of parallel sequence alignment on mesh
and linearly-connected processor arrays with limited
amounts of memory and nearest-neighbor unit-time
communication. Additionally, we would like the algo-
rithm to be well-suited to SIMD broadcast machines,
the simplest type of parallel processor, which work best
when data flow is independent of the actual data, apart
from its length. A typical mapping of the dynamic pro-
gramming calculation is shown in Figure 2. Here, PEs
are assigned to each character in sequence a while se-
quence b shifts through the array, one PE per time
step. The final calculation of c3 3 takes place in Pk3

@ T=0
by T=1
ba T =2
b3 T=3
T =4
T=5
T=26

PEq PE, PE, PE,

Figure 2: Mapping dynamic programming to a linear
Processor array.

at time step 6 using az and b3, while ¢ 3 and c3 5 are
computed during time step 5.

We hold these goals for two reasons: first, the
linearly-connected array is the simplest parallel hard-
ware suitable for generating O(P) speedup in the cal-
culation of dynamic programming costs, and second
because we are currently working on such hardware
in our project called Kestrel. Kestrel is an 8-bit pro-
grammable linear processor array in which each pro-
cessing element (PE) has 288 bytes of memory and an
arithmetic logic unit tuned to sequence analysis. We
expect 64-128 PEs to fit on a chip, and a minimum
of 2048 PEs per system. A single small Kestrel board
will greatly outperform general-purpose parallel com-
puters, and perform similarly to or better than other
special-purpose hardware (Lipton & Lopresti 1985;
Hughey & Lopresti 1991; Chow et al. 1991; Gokhale
& others 1991; Singh & others 1993) with significantly
greater versatility (including, for example, the abil-
ity to perform sequence alignments using the algo-
rithms described herein). Beyond our system, however,
these results are applicable to any nearest-neighbor-
connected array processor, such as the MasPar fam-
ily of mesh-connected parallel computers, whose global
communication is considerably slower than local com-
munication (Nickolls 1990), as well as serial machines.

Algorithm

Let us define several parameters. Let n be the length
of the longest of the two sequences compared and m be
the length of the shorter. Let P represent the number
of processing elements and M the amount of available
memory per processing element (PE). For massively
parallel implementations, P will be within a small con-
stant of m. Let d be the number of diagonals in the
dynamic programming matrix, where d = n+m+1, or
if sequence lengths are equal d = 2n+1. To simplify the
discussion, we assume without loss of generality that
n = m. Similarly, we assume that P = n; if P < n,
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memory

for i—1to 2n+1
ComputeAndSaveOutcome (diagonalli], Trace[i]);

/* Traceback */
i+ n+l
j — n+l1
state «— delete
while (i >0 && 5 > 0)
print state (i,j) = state
state = minstate (i,j,state)
case state:
delete: j=35—1
insert: 1 =1 —1
match: 1 =1—-1; 5=75—1
endcase
endwhile

Figure 3: Basic algorithm and memory partition

then all time and space bounds should be multiplied
by the virtual processor ratio, n/P.

The basic alignment algorithm is displayed in Fig-
ure 3. It includes two parts. In the first part, the ¢; ;
values for each state and each (¢, j) pair are calculated
according to the recurrence equations described above.
During this calculation, the decision bit of each mini-
mization is saved in memory. In the second part (the
traceback phase), a chain of states from C£+1,n+1 to

C{)j,o is constructed by following the path of the mini-
mizations. The memory used to store the minimization
choices 1s called traceback memory, and must include
Q(n) elements per column or processing element.

The simple alignment algorithm’s limitation to n =
O(M) can be overcome by taking advantage of the fact
that it is not necessary to save the outcome of all com-
parisons to perform the traceback. It is only necessary
to have enough information to recompute the compar-
isons as required. To efficiently recalculate the compar-
isons of a diagonal in the dynamic programming ma-
trix, the state of computation a little before that time
is needed. By appropriately selecting when to save
these checkpoints of state information, which include
all cost totals required to calculate future diagonals,
alignments can be performed in limited space.

Figure 4: The circled values in the above dependency
diagram must be saved to enable recalculation of diag-
onal 2.

Algorithm A: 2-Level Fixed Partition

To find alignments for sequences longer than M, the
available memory can be divided into a space for align-
ment traceback calculation, M., and a space to
store checkpoints, M .. - Because traceback cannot
commence until the final ¢, , value of the matrix is
computed, only the final block of traceback informa-
tion needs to be saved. The first Mi;q0e comparison
outcomes can be discarded because they can be re-
calculated from the initial conditions. The state of
the last computation of this segment must be saved as
a checkpoint. This information can be saved in four
values per processing element. With affine gap costs,
this corresponds to saving four values per column, as
shown in Figure 4. All circled values are required in
the calculation of diagonal two; the three values in the
(0,1) location will be used, with different transition
costs, by (0,2) and (1,1) on diagonal two and (1,2)
on diagonal three with a third set of transition costs.
For the remainder of this discussion, we assume that
M is measured by the number of checkpoints it can
hold, and that there is a one-to-one correspondence be-
tween checkpoint and traceback storage. The space ef-
ficiency of the algorithms could be improved by noting
that storing choices requires less memory than storing
checkpoints (six bits as opposed to four words).

After state has been saved the next M, . diagonals
can be computed and another checkpoint saved. These
comparison outcomes can also be discarded because
they can be recomputed from the first saved check-
point. This process is repeated until the sequences
have been compared. To find an optimal alignment, a
traceback is performed on the last Mi. 00 diagonals.
The previous Mipqce comparison outcomes are recom-
puted from checkpoint information, and a traceback is
performed on those diagonals. This algorithm is shown
in Figure 5. We call this a two-level method because of
the hierarchy in calculating values: checkpoints com-
bined with simple (level-1) forward and traceback cal-
culations.

The performance of algorithm A is simple to ana-
lyze. The greatest number of diagonals that can be
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iterations «— [(2r + 1)/ Miyace| — 1;
for cycle — 0 to iterations — 1
for i — cycle * Miyace to (cycle + 1) *Mipace — 1
ComputeCosts (diagonal[i]);
if (cycle < iterations —1)

SaveState (Check[cycle]);

diag — 2n;
for cycle < iterations to 0
for i «— cycle x My; 0 to diag
ComputeAndSaveOutcome (diagonalli], Trace[i]);
Traceback (Trace[cycle * Mipqce- - - diag));
diag «— cycle *Mi 000 — 1;
if (cycle > 1)
RetrieveCheckpoint (Check[cycle —2]);

Figure 5: Algorithm A and memory partition

calculated with M pock + Mtrace memory locations
is Mirace(Mcpeck + 1), which for a given amount of
memory M is optimized by M ook = Mirace = M/2.
Converting diagonals to n, the amount of space per PE
required for sequences of length n is O(y/n), while the
parallel time required for the calculation is approxi-
mately 3d = O(n), assuming each forward or back-
ward cell calculation requires unit time. Thus, with a
constant factor, 50% slowdown, memory requirements
have been reduced asymptotically by O(y/n).

The major problem of mapping Huang’s paralleliza-
tion to a linear array of processing elements is the data-
dependent and arbitrary patterns of sequence move-
ment. Algorithm A, on the other hand, only requires
linear shifts of the moving sequence through the array:
initially, one sequence is shifted entirely through the
array as a complete forward calculation is performed
and several checkpoints are saved. For each of the seg-
ments of the traceback calculation, the sequence is first
shifted backwards through the array to the start of the
previous segment, then forwards for the recalculation.
Because each processing element always computes the
same column, the data movement is entirely regular
and data independent. Additionally, the number of
backward sequence shifts needed to start a new seg-
ment is proportional to the number of diagonals in
that segment: the asymptotics of the algorithm do not
change (the shifts will form around 10% of the cell pro-
gram on Kestrel).

We do assume that there is sufficient memory out-
side the array, connected to the two end PEs, to store
the complete moving sequence. Note that the basic al-
gorithm requires sufficient memory at one side of the
array to store the moving sequence. The second stag-
ing memory is simply an extension of this concept, and
is available on target architectures. For example, in a
general-purpose SIMD processor, the array controller’s
memory could be used.

Algorithm B: 2-Level Moving Partition

The previous algorithm does not use the checkpoint
memory efficiently. When memory is not holding a
checkpoint, it should be available for use in traceback
computation. The division between checkpoint mem-
ory and computation memory can move forward as
more checkpoint memory is needed and recede after
those checkpoints have been used. This improvement
is incorporated into Algorithm B in Figure 6. If there is
enough memory to hold 32 checkpoint values, then the
first 32 diagonals of the dynamic programming matrix
can be computed and thrown away, saving the state at
the last (32nd) diagonal. After the state is saved, there
are, looking forward to the traceback part of the algo-
rithm, only 31 locations available for traceback so only
31 steps should be computed. These actions repeat un-
til the end of the sequence. During the traceback phase
of the algorithm each iteration is having the reverse ef-
fects on the available memory. With each traceback
iteration a section of the dynamic programming table
is recreated from a checkpoint that is no longer taking
up memory.

Algorithm B, with M memory per PE, can compute
Zf‘il i = M(M+1)/2 diagonals and, as with the previ-
ous algorithm, parallel running time is approximately
3d = O(n). Thus, Algorithm B has similar perfor-
mance as Algorithm A, but makes more effective use
of its memory.

Algorithm C: 3-Level Moving Partitions

A multi-level version of Algorithm B can extend mem-
ory use even further. Algorithm C, shown in Fig-
ure 7, is a 3-level algorithm: level-3 checkpoints, level-
2 (Algorithm B) checkpoints, and the basic calcula-
tion. Similar to the previous algorithms, after storing
a level-3 checkpoint, Algorithm B is used to calculate
as many diagonals as possible before storing the next
level-3 checkpoint.

Algorithm C will, as it is filling its checkpoint mem-
ory, call Algorithm B with a range of workspaces from
M down to 1, thus the number of diagonals this algo-
rithm can compute is

Yii+1) (M +2)(M+1)M
2= G -

i=1

This yields an asymptotic space requirement of O(/n).
While each traceback calculation is performed exactly
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M — size of memory; diags — 0; cycle — 0;
while (diags + M — cycle —1 < 2n + 1)
for i — diags to diags + M — cycle —1
ComputeCosts (diagonal[i]);
diags — 1+ 1;
if (not last iteration)
SaveState (Memory|[cycle]);
M— M -1;
cycle «— cycle + 1;

iterations < cycle;
for cycle < iterations to 0
for i — diags to diags + M — cycle —1
ComputeAndSaveOutcome (diagonal[i], Memoryl[i]);
Traceback (Memory[diag ... i]);
diags «— diags — (M — cycle + 1);
if (cycle > 1)
RetrieveCheckpoint (Memory[cycle — 2]);

Figure 6: Algorithm B and memory partition

once, forward calculations are performed up to three

times each (once at each level), giving a parallel run-
ning time of 4d = O(n).

One additional inefficiency in the algorithms as ex-
pressed so far can be seen in Figure 8, an application of
Algorithm C to calculate 15 diagonals with only three
memory locations. Consider the level-2 checkpoint at
diagonal 4. Processors 5-8 do not need to store any
values for this checkpoint, apart from, possibly, ini-
tial conditions. Thus, some of their memory is wasted.
This problem could be solved if instead of diagonal
checkpoints, row checkpoints were used. While this
would be fine for a serial computation, it would slow
down the SIMD parallel computation. Because all val-
ues in a given row are calculated at different times,
the inner core of the cell program would have to in-
clude a save instruction that was executed by only one
processing element during each iteration. Thus, in ex-
change for slight memory inefficiency (especially slight
when the fixed sequence is smaller than the moving
sequence), a simpler and faster algorithm is gained.

level-3
checkpoint
memory

level-2
checkpoint
memory

Y

traceback
memory

M « size of memory; diags — 0; cycle — 0;
while (diags + %JWQ — %M <2n+1)
for i — diags to diags + %]WQ - %]\1
ComputeCosts (diagonalli]);
diags — i + 1;
if (not last iteration)
SaveState (Memory[cycle]);

cycle « cycle + 1;

b — 2n + 1— diags;
iterations < cycle;
for cycle < iterations to 0
Algorithm B on diags to diags + b
M~M+1;
be— %1’\42 — %Z\l;
diags — diags — (b + 1);
if (cycle > 1)
RetrieveCheckpoint (Memory[cycle — 2]);

Figure 7: Algorithm C and memory partition

2
L2
L1 |[3X 3X 2X
L1 T
1 2 3 4 5 6 7 8
1 o T3
L1 {3X
2| o
3] 0
7/
4P L2
L2 |2X
5| o L1
6 o
, ii’ 1X
TP

Figure 8: The computation of fifteen diagonals using
three memory locations and the 3-level algorithm C.
The solid diagonals are level-3 checkpoints, while the
dashed lines are level-2 checkpoints. The level-2 check-
points at diagonals 7 and 12 do not actually need to
be saved. If the initial conditions are to be stored,
rather than recomputed, an additional level-3 check-
point is required for diagonal 0. The numbers next
to the memory diagrams indicate the number of times
the forward calculation is redone.



Algorithm D: Fully-Recursive
Partitioning

The previous sections discussed base case 1-level align-
ment, 2-level alignment with fixed (Algorithm A) and
moving (Algorithm B) partitions of M into M j ..k
and Mipqace, and 3-level alignment with moving parti-
tions (Algorithm C). In this section, we consider arbi-
trary L-level recursion, in particular the case in which
the number of levels is equal to the amount of memory.

Having seen 2- and 3-level algorithms, a similar 4-
level algorithm will be able to calculate

i”: (i+2)(i+1)i (M + 3)(M + 2)(M + 1)(M)

6 24
= O(M*)

diagonals. Additionally, each forward calculation will
be repeated at most 4 times, leading to 5d cell program
calculations, on consideration of the traceback phase.
In general, the number of diagonals that can be com-
puted with a level-L algorithm and M memory is

i=1

dp(M) = ZdL_l(i).

This recurrence, when di(M) = M, is solved by:

M+L-1
d(M) = ( +L )
(M4 L-1)
- (M-I
M4 L-1..M
L..1

Thus, for a given number of levels L, O(ML/LL)
diagonals can be calculated in O(Ld) time. Changing
these to be in terms of n, the L-level algorithm will
requires O(Ln) parallel time and O(L {/n) memory per
PE.

At one extreme is L = 1, the basic algorithm that
requires O(n) parallel time and O(n) memory per PE.
At the other extreme is L = n. Here, a single memory
location is used to calculate an alignment of any length
by repeating the forward calculation from cg o up to
each diagonal in turn, using O(n?) parallel time.

Now suppose that logn levels are used. The algo-
rithm requires O(nlogn) time and O(logn °s3/n) =
O(logn) space per PE. Thus, memory requirements
on a linearly-connected parallel processor can be re-
duced from O(n) per PE to O(logn) per PE with an
O(log n) slowdown.

The per-PE memory requirements of the simple al-
gorithm, as well as algorithms B, C, and D, are shown
in Figure 9.

Practical Considerations

The previous sections have, purposely, simplified sev-
eral aspects of the algorithms in the hope of presenting
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Figure 9: Alignable sequence length as a function of
PE memory for the algorithms. For fewer than n PEs,
multiply space requirements by the virtual processor
ratio, n/P.

the broader picture. There are several practical con-
siderations that deserve a brief mention.

The discussion generally assumed that the number
of processors was equal to the length of the sequences.
As long as the number of processors is within a small
constant factor of the length of the sequences, these
algorithms can still be applied. In this case, a vir-
tual processor ratio greater than one is used; a single
PE will compute values of two or more columns. In
the case of two characters per PE, this will halve the
amount of memory available for alignment.

There is a second drain on available memory, es-
pecially when protein sequences are being compared.
The match cost tables, as well as transition costs in
the case of an linear hidden Markov model (HMM),
must be stored in each processing element. Fortu-
nately, since our systolic mapping of choice keeps one
sequence fixed, this will only be a single column of the
cost table, or 20 numbers.

A final reduction to available memory will occur
on the Kestrel architecture when calculation modulo-
256 is not appropriate, in particular, in subsequence
alignment and HMM training. In this case, multiple-
precision arithmetic must be used, usually with two
bytes per dynamic programming table entry. In spite
of the need for multiple-precision ¢; ; values, individual
costs, such as for the 20 amino acids, can still be stored
with lower precision. HMM training on the MasPar,
our second application target, will always use that ma-
chine’s native 32-bit numbers.

A memory savings can be had by noting that only
six bits of information, corresponding to the two min-
imizations performed in the calculation for each of the
three states, needs to be saved to perform traceback.
To realize this savings, the program loop must be un-
rolled four times for all possible positionings of the first



of the six bits within a byte. (Theoretically, five 3-way
decisions could be packed into a byte, rather than just
four.)

Another point of interest is when a sequence or
model does not closely match the array length, such as
if it has P/2 or 1.5P characters, where P is the number
of processors. The MasPar features direct communica-
tion to any of the PEs in the array, so that placing
and retrieving data from any PE has little cost. In the
HMM code, if a model is of length L, | P/L]| copies of
the model are placed in the array and used simultane-
ously. While the Kestrel array allows direct, fast input
to any one PE in the array, output from the PEs is
slower. There are three solutions. First, most sequence
comparison problems can be extended to include effec-
tive no-operation costs or pad characters, which can
be used to ensure that the flow through the “excess”
processing elements does not affect results. Second,
data can be fed directly into any PE via the broadcast
mechanism, with results retrieved from the end PE as
usual. Third, the data movement can be folded, so
that data enters and exits the same end of the array.
For example, if the stored sequence is of length 1.5P,
the first PE could store the first and last character, the
second PE the second and next-to-last character, and
so on, with the moving character sequence reversing
direction three quarters of the way through the array.

Finally, in several places, this paper makes the sim-
plifying assumption that the two sequences are of equal
length. This assumption is really only used in the cre-
ation of Figure 9. The number of levels required by the
algorithms, given that one sequence has been success-
fully placed in the array, is entirely determined by the
amount of memory available per logical PE (ie, half
the total memory if the virtual processor ratio is 2)
and the length of the moving sequence. For sequences
of length n and m the fully-recursive algorithm will
require O(n) PEs each with O(logm) memory with a
O(log m) slowdown.

Conclusions

This paper has considered sequence alignment on
SIMD parallel processors with nearest-neighbor inter-
connections and limited local memory. The simplest
algorithm squares the length of sequence that can be
aligned in a given amount of memory with only a
50% slowdown in execution time. Multilevel variants
of the algorithm can further reduce memory require-
ments to O(logn) space per processing element and
O(nlogn) parallel execution time. Our algorithms do
not match the constant space per processing element
of Huang’s parallelization of Hirschberg’s algorithm.
However, unlike those algorithms, our algorithms re-
quire no problem-dependent partitioning or data move-
ment, and as such are appropriate for SIMD parallel
computers, in particular linear or mesh-connected pro-
cessor arrays. Additionally, because of their close rela-
tion to the basic algorithm, they are more appropriate

for extending the capabilities of existing serial and par-
allel applications.

Two current projects at the University of Califor-
nia, Santa Cruz, will use these methods: the SAM se-
quence alignment and modeling software system, and
the Kestrel sequence analysis co-processor.

SAM is a suite of programs for using and train-
ing linear hidden Markov models (Krogh et al. 1994;
Hughey & Krogh 1995). The SAM distribution in-
cludes a parallel version that runs on the MasPar fam-
ily of SIMD mesh-connected computers. SAM’s core
expectation-maximization training phase requires in-
formation about all possible alignments of each se-
quence to the model, rather than just the best align-
ment. Thus, Hirschberg’s algorithm and its successors,
which only locate the best possible alignment, could
not be used to improve memory performance. When
implemented, the 2-level algorithm B will square our
current sequence length limit of about 2000.

As mentioned previously, the Kestrel processing el-
ements will each have 288 bytes of local memory. The
3-level Algorithm C will enable sequence alignment
of over 30,000 nucleotides. Indeed, the discovery of
these algorithms produced major architectural simpli-
fications from our original design with 2048 bytes of
memory per PE, illustrating the importance of devel-
oping algorithms and applications in concert. A pro-
totype system is expected in early 1997.

An overview of the Kestrel project and the SAM
sequence alignment and modeling software system is
located at the University California, Santa Cruz, com-
putational biology group’s World-Wide Web page at
http://www.cse.ucsc.edu/research/compbio, and
related papers are available from ftp.cse.ucsc.edu,
in the protein, dna, and rna subdirectories of pub.
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