Technische Universität München Department of Informatics Chair for Efficient Algorithms Prof. Dr. Ernst W. Mayr/Dr. Jens Ernst Johannes Nowak

Selected Topics in Computational Biology

Due: 31.05.2005 after the lecture

Exercise 1 (10 points)

Consider the tree T_i which is constructed in the $i\mathchar`-th$ step of McCreight's algorithm. Proof that

- a) All nodes with the only possible exception of the node corresponding to the locus of $head_i(t)$ have a valid suffix link.
- b) In step *i*, the algorithm visits the contracted locus of $head_i(t)$ in T_{i-1} .

Exercise 2 (10 points)

Compare Ukkonen's and McCreight's algorithm for suffix tree construction. Describe the basic idea of both algorithms. Are there similarities between the algorithms? Where are the differences?

Exercise 3 (10 points)

Let $s, t \in \Sigma^*$ and |s| = |t| = n. Show that the number of all possible different alignments of s and t is exponential in the length of the sequences. To achieve this, you can proceed as follows.

- a) Show that $\binom{2n}{n}$ is a lower bound for the total number of alignments.
- b) Use Stirling's formula $(n! \approx \sqrt{2\pi n} \cdot n^n \cdot e^{-n} \text{ as } n \to \infty)$ to show that this number grows exponentially in n.

Exercise 4 (10 points)

Consider the method of Amir et al. for *Approximate Text Indexing With One Error*. Why is it necessary to modify the algorithm if exact matches exist?