WS 2003/04

Diskrete Strukturen I

Ernst W. Mayr

mayr@in.tum.de Institut für Informatik Technische Universität München

02-13-2004

Greedy Färbungsalgorithmus:

Il Gegeben: Graph G=(V,E) mit $V=\{v_1,\ldots,v_n\}$ il Gesucht: Färbung $c:V\to\{1,\ldots,n\}$ il il $c[v_1]\leftarrow 1;$ il i:=2 n il $c[v_i]\leftarrow \min\{k\in\mathbb{N};\ k\neq c(u)$ für alle il il $u\in N(v_i)\cap\{v_1,\ldots,v_{i-1}\}\};$ il

Für die Anzahl ${\cal C}(G)$ von Farben, die der Algorithmus benötigt, gilt:

$$\chi(G) \le C(G) \le \Delta(G) + 1$$
.

Die Anzahl der verwendeten Farben hängt im Allgemeinen stark von der Reihenfolge ab, in der die Knoten betrachtet werden. So gibt es immer eine Reihenfolge, die nur $\chi(G)$ Farben benützt (ohne Beweis).

Für die Anzahl ${\cal C}(G)$ von Farben, die der Algorithmus benötigt, gilt:

$$\chi(G) \le C(G) \le \Delta(G) + 1$$
.

Die Anzahl der verwendeten Farben hängt im Allgemeinen stark von der Reihenfolge ab, in der die Knoten betrachtet werden. So gibt es immer eine Reihenfolge, die nur $\chi(G)$ Farben benützt (ohne Beweis).

Für die Anzahl ${\cal C}(G)$ von Farben, die der Algorithmus benötigt, gilt:

$$\chi(G) \le C(G) \le \Delta(G) + 1$$
.

Die Anzahl der verwendeten Farben hängt im Allgemeinen stark von der Reihenfolge ab, in der die Knoten betrachtet werden. So gibt es immer eine Reihenfolge, die nur $\chi(G)$ Farben benützt (ohne Beweis).

Aber es geht auch bedeutend schlechter.

Beispiel

Entferne aus dem $K_{n,n}$ die Kanten zwischen gegenüberliegenden Knoten:

Aber es geht auch bedeutend schlechter.

Beispiel

Entferne aus dem $K_{n,n}$ die Kanten zwischen gegenüberliegenden Knoten:

Satz ((Brooks 1941))

Es gibt einen Algorithmus, der jeden Graph G=(V,E) in Zeit O(|V|+|E|) so färbt, dass für die Anzahl A(G) der verwendeten Farben gilt:

$$\chi(G) \leq A(G) \leq \begin{cases} \Delta(G) + 1 & \text{falls } G = K_n \text{ oder } G = C_{2n+1}, \\ \Delta(G) & \text{sonst.} \end{cases}$$

(ohne Beweis)

Satz ((Brooks 1941))

Es gibt einen Algorithmus, der jeden Graph G=(V,E) in Zeit O(|V|+|E|) so färbt, dass für die Anzahl A(G) der verwendeten Farben gilt:

$$\chi(G) \leq A(G) \leq \begin{cases} \Delta(G) + 1 & \text{falls } G = K_n \text{ oder } G = C_{2n+1}, \\ \Delta(G) & \text{sonst.} \end{cases}$$

(ohne Beweis)

Eine Kantenfärbung (edge coloring) mit k Farben ist eine Abbildung $c: E \rightarrow \{1, \dots, k\}$, so dass gilt

$$c(e) \neq c(f)$$
 für alle Kanten $e, f \in E$, $e \cap f \neq \emptyset$.

Der chromatische Index (chromatic index) $\chi'(G)$ ist die minimale Anzahl Farben, die für eine Kantenfärbung von G benötigt wird.

Eine Kantenfärbung (edge coloring) mit k Farben ist eine Abbildung $c: E \rightarrow \{1, \dots, k\}$, so dass gilt

$$c(e) \neq c(f)$$
 für alle Kanten $e, f \in E$, $e \cap f \neq \emptyset$.

Der chromatische Index (chromatic index) $\chi'(G)$ ist die minimale Anzahl Farben, die für eine Kantenfärbung von G benötigt wird.

Beobachtung:

Für jeden Graphen G gilt:

$$\chi'(G) \ge \Delta(G)$$
.

Jedoch: Die Frage

"Gegeben ein Graph
$$G=(V,E)$$
, gilt $\chi'(G)=\Delta(G)$?"

ist wiederum NP-vollständig

Beobachtung:

Für jeden Graphen G gilt:

$$\chi'(G) \ge \Delta(G)$$
.

Jedoch: Die Frage

"Gegeben ein Graph
$$G=(V,E)$$
, gilt $\chi'(G)=\Delta(G)$?"

ist wiederum \mathcal{NP} -vollständig.

Dies ist umso bemerkenswerter, da:

Satz ((Vizing 1964))

[2ex] Es gibt einen Algorithmus, der die Kanten eines Graphen G=(V,E) in Zeit $O(|V|\cdot|E|)$ so färbt, dass für die Anzahl A(G) der verwendeten Farben gilt:

$$\Delta(G) \le \chi'(G) \le A(G) \le \Delta(G) + 1.$$

(ohne Beweis)

Dies ist umso bemerkenswerter, da:

Satz ((Vizing 1964))

[2ex] Es gibt einen Algorithmus, der die Kanten eines Graphen G=(V,E) in Zeit $O(|V|\cdot|E|)$ so färbt, dass für die Anzahl A(G) der verwendeten Farben gilt:

$$\Delta(G) \le \chi'(G) \le A(G) \le \Delta(G) + 1.$$

(ohne Beweis)

\mathcal{NP} -Vollständigkeit

Grundlagen

Definition

- (i) Eine aussagenlogische Formel ist aus Variablen, booleschen Operatoren (\lor,\land,\lnot) , Konstanten 0, 1 und Klammern aufgebaut.
- (ii) Eine boolesche Formel heißt *erfüllbar*, wenn es Belegungen der Variablen mit Werten aus $\{0,1\}$ gibt, so dass die Formel $\equiv 1$ wird. Z.B. $(x \wedge y) \vee (\bar{x} \wedge \bar{y})$.
- (iii) SAT ist die Sprache, die (genau) die erfüllbaren aussagenlogischen Ausdrücke enthält (in geeigneter Kodierung).
- (iv) Eine aussagenlogische Formel F ist in konjunktiver Normalform, falls F die Form $F=C_1\wedge\cdots\wedge C_m$ hat, wobei $C_i=(z_{i_1}\vee z_{i_2}\vee\cdots\vee z_{i_{r_i}})$ für $i\in[1:m]$ (die C_i nennt man auch Klauseln) und $z_{i_j}\in\{x_1,\bar{x}_1,x_2,\bar{x}_2,\ldots,x_m,\bar{x}_m\}$ für $i\in[1:m],\ j\in[1:r_i]$ (die z_{i_j} nennt man Literale).

\mathcal{NP} -Vollständigkeit

Grundlagen

Definition

- (i) Eine aussagenlogische Formel ist aus Variablen, booleschen Operatoren (\vee,\wedge,\neg) , Konstanten 0, 1 und Klammern aufgebaut.
- (ii) Eine boolesche Formel heißt *erfüllbar*, wenn es Belegungen der Variablen mit Werten aus $\{0,1\}$ gibt, so dass die Formel $\equiv 1$ wird. Z.B. $(x \wedge y) \vee (\bar{x} \wedge \bar{y})$.
- (iii) SAT ist die Sprache, die (genau) die erfüllbaren aussagenlogischen Ausdrücke enthält (in geeigneter Kodierung).
- (iv) Eine aussagenlogische Formel F ist in konjunktiver Normalform, falls F die Form $F=C_1\wedge\cdots\wedge C_m$ hat, wobei $C_i=(z_{i_1}\vee z_{i_2}\vee\cdots\vee z_{i_{r_i}})$ für $i\in[1:m]$ (die C_i nennt man auch Klauseln) und $z_{i_j}\in\{x_1,\bar{x}_1,x_2,\bar{x}_2,\ldots,x_m,\bar{x}_m\}$ für $i\in[1:m],\ j\in[1:r_i]$ (die z_{i_j} nennt man Literale).

\mathcal{NP} -Vollständigkeit

Grundlagen

Definition

- (i) Eine aussagenlogische Formel ist aus Variablen, booleschen Operatoren (\lor,\land,\lnot) , Konstanten 0, 1 und Klammern aufgebaut.
- (ii) Eine boolesche Formel heißt *erfüllbar, wenn es Belegungen der Variablen mit Werten aus* $\{0,1\}$ *gibt, so dass die Formel* $\equiv 1$ *wird.* Z.B. $(x \wedge y) \vee (\bar{x} \wedge \bar{y}).$
- (iii) SAT ist die Sprache, die (genau) die erfüllbaren aussagenlogischen Ausdrücke enthält (in geeigneter Kodierung).
- (iv) Eine aussagenlogische Formel F ist in konjunktiver Normalform, falls F die Form $F=C_1\wedge\cdots\wedge C_m$ hat, wobei $C_i=(z_{i_1}\vee z_{i_2}\vee\cdots\vee z_{i_{r_i}})$ für $i\in[1:m]$ (die C_i nennt man auch Klauseln) und $z_{i_j}\in\{x_1,\bar{x}_1,x_2,\bar{x}_2,\ldots,x_m,\bar{x}_m\}$ für $i\in[1:m],\ j\in[1:r_i]$ (die z_{i_j} nennt man Literale).

- (a) CNF-SAT ist die Sprache, die die erfüllbaren aussagenlogischen Formeln in konjunktiver Normalform enthält.
- (b) 3-CNF-SAT (aka 3-SAT) ist die Sprache, die die erfüllbaren aussagenlogischen Formeln in konjunktiver Normalform enthält, bei denen jede Klausel aus maximal drei Literalen besteht.

Bemerkung: 2-SAT $\in \mathcal{P}$. (Idee: $(a \lor b) \Leftrightarrow (\bar{a} \Rightarrow b \land \bar{b} \Rightarrow a)$)

- (i) SAT ist NP-vollständig
- (ii) CNF-SAT ist NP-vollständig
- (iii) 3-SAT ist NP-vollständig

- (a) CNF-SAT ist die Sprache, die die erfüllbaren aussagenlogischen Formeln in konjunktiver Normalform enthält.
- (b) 3-CNF-SAT (aka 3-SAT) ist die Sprache, die die erfüllbaren aussagenlogischen Formeln in konjunktiver Normalform enthält, bei denen jede Klausel aus maximal drei Literalen besteht.

Bemerkung: 2-SAT $\in \mathcal{P}$. (Idee: $(a \lor b) \Leftrightarrow (\bar{a} \Rightarrow b \land \bar{b} \Rightarrow a)$)

- (i) SAT ist NP-vollständig.
- (ii) CNF-SAT ist NP-vollständig.
- (iii) 3-SAT ist NP-vollständig.

- (a) CNF-SAT ist die Sprache, die die erfüllbaren aussagenlogischen Formeln in konjunktiver Normalform enthält.
- (b) 3-CNF-SAT (aka 3-SAT) ist die Sprache, die die erfüllbaren aussagenlogischen Formeln in konjunktiver Normalform enthält, bei denen jede Klausel aus maximal drei Literalen besteht.

Bemerkung: 2-SAT $\in \mathcal{P}$. (Idee: $(a \lor b) \Leftrightarrow (\bar{a} \Rightarrow b \land \bar{b} \Rightarrow a)$)

- (i) SAT ist NP-vollständig.
- (ii) CNF-SAT ist NP-vollständig.
- (iii) 3-SAT ist NP-vollständig.

- (a) CNF-SAT ist die Sprache, die die erfüllbaren aussagenlogischen Formeln in konjunktiver Normalform enthält.
- (b) 3-CNF-SAT (aka 3-SAT) ist die Sprache, die die erfüllbaren aussagenlogischen Formeln in konjunktiver Normalform enthält, bei denen jede Klausel aus maximal drei Literalen besteht.

Bemerkung: 2-SAT $\in \mathcal{P}$. (Idee: $(a \lor b) \Leftrightarrow (\bar{a} \Rightarrow b \land \bar{b} \Rightarrow a)$)

- (i) SAT ist NP-vollständig.
- (ii) CNF-SAT ist \mathcal{NP} -vollständig.
- (iii) 3-SAT ist NP-vollständig.

Beweis

(Skizze)

3-SAT ist die stärkste Behauptung.

(i) 3-SAT $\in \mathcal{NP}$:

Teste nichtdeterministisch alle Belegungen der Variablen. Ist mindestens eine erfüllend, so akzeptiert die \mathcal{NP} -Maschine.

(ii) 3-SAT \mathcal{NP} -harts

Sei N irgendeine \mathcal{NP} -Maschine.

Zu zeigen: $L(N) \leq_m^p 3$ -SAT

Da N eine \mathcal{NP} -Maschine ist, gibt es ein Polynom p, so dass

N auf Eingabe x maximal p(|x|) Schritte macht.

Betrachte Berechnung von N auf x. (Ohne Beschränkung der Allgemeinheit akzeptiert N mit leerem Band und Kopf ganz links – also eindeutigem Endzustand).

Beweis

(Skizze)

3-SAT ist die stärkste Behauptung.

(i) 3-SAT $\in \mathcal{NP}$:

Teste nichtdeterministisch alle Belegungen der Variablen. Ist mindestens eine erfüllend, so akzeptiert die \mathcal{NP} -Maschine.

(ii) 3-SAT \mathcal{NP} -hart:

Sei N irgendeine \mathcal{NP} -Maschine.

Zu zeigen: $L(N) \leq_m^p 3\text{-SAT}$

Da N eine \mathcal{NP} -Maschine ist, gibt es ein Polynom p, so dass

N auf Eingabe x maximal p(|x|) Schritte macht.

Betrachte Berechnung von N auf x. (Ohne Beschränkung der Allgemeinheit akzeptiert N mit leerem Band und Kopf ganz links – also eindeutigem Endzustand).

(ii) 3-SAT \mathcal{NP} -hart (Fortsetzung): Definiere boolesche Variablen

 $x_{t,i,a} \quad \hat{=} \quad \text{zum Zeitpunkt } t \text{ enthält das } i\text{-te Feld}$ des Bandes das Zeichen a

also mit $t, i \in [1, p(n)], a \in \Sigma \times Q$.

(ii) 3-SAT \mathcal{NP} -hart (Fortsetzung):

Formel:

"erste Zeile richtig" Startzustand p_0 ; Eingabe $x_0 \dots x_{n-1}$, sonst leer p(n)-te Zeile richtig" links p(n)-te Zeile richtig"

",p(n) to Zeile steht nur ein ein Paar(q,x) taucht in jeder Zustand"

Zeile genau einmal auf

 $^{\wedge}$ "stimmt die Übergangsfunktion" alle "T-Felder" müssen konsistent gemäß der δ -Relation sein

Man kann zeigen, dass die Formel polynomiell groß (etwa $p^3(n)$) und in polynomieller Zeit berechenbar (etwa $p^3(n)$) ist.

q. e. d.

CLIQUE ist die Sprache $\{(G,k); \text{ der (ungerichtete) Graph } G \text{ enthält eine Clique mit } \geq k \text{ Knoten} \}.$

Satz CLIQUE ist NP-vollständig

(ohne Beweis)

CLIQUE ist die Sprache $\{(G,k); \text{ der (ungerichtete) Graph } G \text{ enthält eine Clique mit } \geq k \text{ Knoten} \}.$

Satz

CLIQUE ist \mathcal{NP} -vollständig.

(ohne Beweis)

Eine kleine Sammlung \mathcal{NP} -vollständiger Probleme

Definition

(i) Partition ist die Sprache

$$\{(b_1,\ldots,b_n);\ b_i\in\mathbb{N}, (\exists I\subseteq\{1,\ldots,n\})[\sum_{i\in I}b_i=\sum_{i\not\in I}b_i]\}$$

- (ii) Binpacking ist die Sprache $\{(a_1,\ldots,a_n,b,h); a_i,b,h\in\mathbb{N}, die Menge der a_i kann in \leq h Klassen partitioniert werden, wobei die Summe in jeder Klasse maximal <math>b$ ist $\}$
- (iii) Hamiltonscher Kreis ist die Sprache
 - $\{G=(V,E); \quad G \text{ ungerichteter Graph, der einen einfachen }$ $Kreis \ der \ L\"{a}nge \ |V| \ enth\"{a}lt\}$

Eine kleine Sammlung \mathcal{NP} -vollständiger Probleme

Definition

(i) Partition ist die Sprache

$$\{(b_1,\ldots,b_n);\ b_i\in\mathbb{N}, (\exists I\subseteq\{1,\ldots,n\})[\sum_{i\in I}b_i=\sum_{i\not\in I}b_i]\}$$

- (ii) Binpacking ist die Sprache $\{(a_1,\ldots,a_n,b,h);\quad a_i,\,b,\,h\in\mathbb{N},\,\text{die Menge der }a_i\\ \text{kann in}\leq h\ \text{Klassen partitioniert}\\ \text{werden, wobei die Summe in jeder}\\ \text{Klasse maximal }b\text{ ist}\}$
- (iii) Hamiltonscher Kreis ist die Sprache
 - $\{G=(V,E); \quad G \text{ ungerichteter Graph, der einen einfachen Kreis der Länge} \ |V| \text{ enthält} \}$

Eine kleine Sammlung \mathcal{NP} -vollständiger Probleme

Definition

(i) Partition ist die Sprache

$$\{(b_1,\ldots,b_n);\ b_i\in\mathbb{N}, (\exists I\subseteq\{1,\ldots,n\})[\sum_{i\in I}b_i=\sum_{i\not\in I}b_i]\}$$

- (ii) Binpacking ist die Sprache $\{(a_1,\ldots,a_n,b,h);\quad a_i,\,b,\,h\in\mathbb{N},\,\text{die Menge der }a_i\\ \text{kann in}\leq h\ \text{Klassen partitioniert}\\ \text{werden, wobei die Summe in jeder}\\ \text{Klasse maximal }b\text{ ist}\}$
- (iii) Hamiltonscher Kreis ist die Sprache
 - $\{G=(V,E); \quad G \text{ ungerichteter Graph, der einen einfachen Kreis der Länge} \ |V| \text{ enthält} \}$

Definition (Fortsetzung)

(iv) TSP ist die Sprache

 $\{(G,w,C); \quad G=(V,E) \mbox{ gerichtet, } w:E
ightarrow \mathbb{R}^+ \mbox{ Gewichtung der Kanten von } G, \mbox{ } G \mbox{ enthält einen hamiltonschen Kreis} \mbox{ der Länge (bzgl. Gewicht)} \leq C \}$

Satz

Partition, Hamiltonscher Kreis und TSP sind \mathcal{NP} -vollständig.

Korollar 26: E ntweder alle \mathcal{NP} -vollständigen Probleme haben einen polynomiellen Algorithmus, oder keines dieser Probleme ist $\in \mathcal{P}$.

Satz

Partition, Hamiltonscher Kreis und TSP sind \mathcal{NP} -vollständig.

Korollar 26: E ntweder alle \mathcal{NP} -vollständigen Probleme haben einen polynomiellen Algorithmus, oder keines dieser Probleme ist $\in \mathcal{P}$.

