2.2 Morphismen

Seien $A=\langle S,\Phi\rangle$ und $\tilde{A}=\langle \tilde{S},\tilde{\Phi}\rangle$ zwei Algebren mit derselben Signatur. 2.2.1 Isomorphismus

Definition: Eine Abbildung

$$h \colon S \to \tilde{S}$$

heißt ein Isomorphismus von A nach \tilde{A} , falls

h bijektiv ist und

2.2 Morphismen

Seien $A=\langle S,\Phi\rangle$ und $\tilde{A}=\langle \tilde{S},\tilde{\Phi}\rangle$ zwei Algebren mit derselben Signatur.

2.2.1 Isomorphismus

Definition: Eine Abbildung

$$h \colon S \to \tilde{S}$$

heißt ein Isomorphismus von A nach \tilde{A} , falls

- h bijektiv ist und
- ightharpoonup h mit den in Φ und $\tilde{\Phi}$ einander entsprechenden Operatoren vertauschbar ist:

$$\begin{array}{ccc} S^m & \stackrel{\circ}{\longrightarrow} & S \\ \downarrow^{(h,\dots,h)} & \downarrow^h \\ \tilde{S}^m & \stackrel{\tilde{\circ}}{\longrightarrow} & \tilde{S} \end{array}$$

• $h(c) = \tilde{c}$ für alle nullstelligen Operatoren (Konstanten) c

- $lacktriangleq h(c) = ilde{c}$ für alle nullstelligen Operatoren (Konstanten) c
- lacktriangleq hig(u(x)ig) = ilde uig(h(x)ig) für alle unären Operatoren $u\in\Phi$, $\forall x\in S$

- $h(c) = \tilde{c}$ für alle nullstelligen Operatoren (Konstanten) c
- $h(u(x)) = \tilde{u}(h(x))$ für alle unären Operatoren $u \in \Phi$, $\forall x \in S$
- $hig(b(x,y)ig) = ilde{b}ig(h(x),h(y)ig)$ für alle binären Operatoren $b\in\Phi$, $\forall x,y\in S$

- $h(c) = \tilde{c}$ für alle nullstelligen Operatoren (Konstanten) c
- ▶ $h(u(x)) = \tilde{u}(h(x))$ für alle unären Operatoren $u \in \Phi$, $\forall x \in S$
- $h\big(b(x,y)\big) = \tilde{b}\big(h(x),h(y)\big)$ für alle binären Operatoren $b\in\Phi$, $\forall x,y\in S$

Notation: $A\cong \tilde{A}$: "A isomorph zu \tilde{A} ", d. h. es existiert ein Isomorphismus von A nach \tilde{A} (und von \tilde{A} nach A).

Ein Isomorphismus von A nach A heißt Automorphismus.

 $\langle \mathbb{N}_0, + \rangle$ und $\langle 2 \cdot \mathbb{N}_0, + \rangle$ (2 · \mathbb{N}_0 : gerade Zahlen) mit

$$h \colon \mathbb{N}_0 \ni n \mapsto 2 \cdot n \in \mathbb{N}_0$$

ist ein Isomorphismus zwischen den beiden Algebren.

 $\langle \mathbb{N}_0, + \rangle$ und $\langle 2 \cdot \mathbb{N}_0, + \rangle$ (2 · \mathbb{N}_0 : gerade Zahlen) mit

$$h \colon \mathbb{N}_0 \ni n \mapsto 2 \cdot n \in \mathbb{N}_0$$

ist ein Isomorphismus zwischen den beiden Algebren.

Beispiel:

$$\langle \mathbb{R}^+, \cdot \rangle$$
 und $\langle \mathbb{R}, + \rangle$ $(\mathbb{R}^+ = \{x \in \mathbb{R}; x > 0\})$

$$h \colon \mathbb{R}^+ \ni x \mapsto \log x \in \mathbb{R}$$

ist ein Isomorphismus (der sog. Rechenschieberisomorphismus)

Satz 3: Ein Algebra-Isomorphismus bildet Einselemente auf Einselemente, Nullelemente auf Nullelemente und Inverse auf Inverse ab.

Satz 3: Ein Algebra-Isomorphismus bildet Einselemente auf Einselemente, Nullelemente auf Nullelemente und Inverse auf Inverse ab.

Beweis: Sei die Abbildung $h:S\to \tilde{S}$ ein Isomorphismus von $A=\langle S,\Phi\rangle$ nach $\tilde{A}=\langle \tilde{S},\tilde{\Phi}\rangle$.

Sei 1 ein rechtes Einselement für den Operator $\circ \in \Phi$ in A. Dann gilt für alle $\tilde{b} \in \tilde{S}$:

$$\tilde{b} \circ h(1) = h(b) \circ h(1) = h(b \circ 1) = h(b) = \tilde{b}$$

Also ist h(1) ein rechtes Einselement in \tilde{A} . Die Argumentation für linke Einselemente, Nullelemente und Inverse ist analog. $q.\,e.\,d.$

2.2.2 Homomorphismus

Definition: Eine Abbildung

$$h \colon S \to \tilde{S}$$

heißt ein Homomorphismus von A nach \tilde{A} , falls h mit den in Φ und $\tilde{\Phi}$ einander entsprechenden Operatoren vertauschbar ist.

 $\langle \mathbb{N}_0, + \rangle$ und $\tilde{A} = \langle \mathbb{Z}_m, +_{(m)} \rangle$ mit $+_{(m)}$ als Addition modulo m.

$$h \colon \mathbb{N}_0 \ni n \mapsto n \bmod m \in \mathbb{Z}_m$$

ist ein (surjektiver) Homomorphismus.

$$\langle \mathbb{N}_0, + \rangle$$
 und $\tilde{A} = \langle \mathbb{Z}_m, +_{\scriptscriptstyle (m)} \rangle$ mit $+_{\scriptscriptstyle (m)}$ als Addition modulo m .

$$h \colon \mathbb{N}_0 \ni n \mapsto n \operatorname{mod} m \in \mathbb{Z}_m$$

ist ein (surjektiver) Homomorphismus.

Beispiel:

 $\langle \Sigma^*, \circ \rangle$ und $\langle \mathbb{N}_0, + \rangle$ mit Σ^* Menge der endlichen Zeichenreihen über dem Alphabet Σ .

$$h \colon \Sigma^* \ni \sigma \mapsto |\sigma| \in \mathbb{N}_0$$

mit $|\sigma|$ der Länge der Zeichenreihe ist ein Homomorphismus.

Satz 4: Sei h ein Homomorphismus von $A=\langle S,\Phi\rangle$ nach $\tilde{A}=\langle \tilde{S},\tilde{\Phi}\rangle$, mit $\tilde{\Phi}=h(\Phi)$. Dann ist $\langle h(S),\tilde{\Phi}\rangle$ eine Unteralgebra von \tilde{A} .

Satz 4: Sei h ein Homomorphismus von $A=\langle S,\Phi\rangle$ nach $\tilde{A}=\langle \tilde{S},\tilde{\Phi}\rangle$, mit $\tilde{\Phi}=h(\Phi)$. Dann ist $\langle h(S),\tilde{\Phi}\rangle$ eine Unteralgebra von \tilde{A} .

Beweis: Offensichtlich.

q. e. d.