
TUTORIAL: HEURISTIC OPTIMIZATION

Ronald L. Rardin

School of Industrial Engineering, Purdue University

West Lafayette, Indiana 47907-1287, U.S.A.

ABSTRACT

Although it is seriously under-represented in most
academic programs, heuristic optimization|optimum-
seeking methods explicitly aimed at good feasible solu-
tions that may not be optimal|comprises most of the op-
timizationwork actually applied in industrial engineering
practice. This tutorial surveys such optimization-based
strategies for approximate integer and combinatorial op-
timization with emphasis on relatively recent develop-
ments such as tabu search, simulated annealing and ge-
netic algorithms.

INTRODUCTION

Heuristic optimization1 encompasses the variety of
optimum-seeking methods explicitly addressed to �nding
good feasible solutions that may not be optimal. Like ex-
act optimization it operates within a formal framework
of decisions, constraints and objective functions, but the
solution method need not be just a truncated variant of
an exact procedure.

Some would say juxtaposing the words \heuristic" and
\optimization" produces a contradiction in terms; one is
inherently approximate and the other restricted to math-
ematical optima. However, the overwhelmingmajority of
optimization work that is actually applied in industrial
engineering practice is implicitly or explicitly heuristic.
The models required are usually just too large and com-
plex to be solved to a provably optimal solution.

Nearly every successful heuristic takes some advan-
tage of domain-speci�c information about the problem
form being optimized. Still, there are common themes
and patterns su�ciently general to be viewed as formal
methodologies.

This paper provides a brief overview of some of the
main heuristic optimization strategies for discrete (inte-
ger and combinatorial) optimization models. Emphasis

1Presented to the Industrial Engineering Research Conference,

Nashville, May 1995

is on relatively recent variations on improving search in-
cluding tabu search, simulated annealing and genetic al-
gorithms (all covered in Reeves [1993]). The development
is strongly based on the outline of a graduate course in
heuristic optimization which was introduced at Purdue
in 1987 by the author and has been taught several times
since with considerable success.

RELAXATION

The one heuristic optimization strategy we will inves-
tigate that is explicitly grounded in methods of exact op-
timization can be termed relaxation. We �rst formulate
the problem as an Integer Linear Program (ILP)

min=max
P

j cjxj +
P

k dkyk
s:t:

P
j pi;jxj +

P
k qi;kyk � bi all i

xj � 0 all j
yk � 0; integer/0-1 all k

(sometimes mildly nonlinear), then form and solve an
easier, relaxed version. The relaxation may be the linear
program (LP) obtained by dropping integrality require-
ments, or a Lagrangian relaxation formed by rolling part
of the main constraints into the objective function. An
approximate optimum is produced by rounding the re-
laxation optimum in some systematic way to a nearby
solution that is feasible in the full model.

Rounding can be very di�cult, but it is surprisingly
easy in many familiar model forms:

� Shift scheduling uses models of the form

min
P

j cjyj
s:t:

P
j ai;jyj � bi all i

yj � 0; integer all j

to choose a collection of work shifts covering needed
activities over time. With coe�cients ai;j, which
show the amount of i coverage provided by shift pat-
tern j, always nonnegative, we may round \up" the
LP optimum as d�yje to obtain an feasible integer
solution.

1

� Capital budgeting employs similar models

max
P

j cjyj
s:t:

P
j ai;jyj � bi all i

yj = 0 or 1 all j

to select a portfolio of investments j subject to
budget limitations. Again, resource requirements
ai;j � 0, and we may round \down" the LP opti-
mum as b�yjc to obtain a heuristic optimum.

� Fixed charge models add binary variables yj to turn
on and o� �xed/setup costs on continuous variables
xj:

min
P

j cjxj +
P

j fjyj
s:t:

P
j ai;jxj � bi all i

0 � xj � ujyj all j
yj = 0 or 1 all j

Here, we may obtain an approximate optimum by
simply paying the full �xed charge on any xj > 0 in
an LP relaxation optimum, i.e. d�yje.

� Lagrangian relaxations usually partition a problem
into parts which are solved separately over subsets
of the decision variables. A \rounded" optimum can
often be obtained by �xing one set of the decision
variables at their relaxation-optimal values and re-
optimizing the others with relaxed constraints reim-
posed.

Relaxation heuristics produce very good solutions in
many applications. Still, their applicability depends on
the existence of an ILP (or INLP) formulation with a
strong relaxation and convenient rounding. When the
application involves important details too intricate to
model, or known relaxations produce solutions that do
not resemble integer-feasible ones, or the objective func-
tion is nonlinear in the integer variables, or rounding is
too di�cult, we must look to other methods. Even if
there is a suitable formulation, the size of real-world in-
stances may preclude the use of relaxations. The LP or
Lagrangian forms may themselves be too large for e�ec-
tive solution.

DECOMPOSITION

Many times what makes an optimizationmodel too dif-
�cult to approach by exact means is the interplay of more
than one decision task: location and allocation, loading
and routing, etc. Each may be manageable by itself, but
it may be di�cult to represent all considerations in a
single model.

M1a

M1b

M1c

M1d

M2a

M2b

M2c

M2d

M3a

M3b

M3c

M3d

M1 M3

M1 M2 M3

FIGURE 1 Factory Layout Example

Such problems invite a decomposition heuristic strat-
egy. That is, we divide solution into two or more tasks
and solve each separately. Some coordination mechanism
must then be imposed to make solutions to the parts con-
sistent in a heuristic optimum.

ITERATION

The most straight-forward decomposition strategy for
producing good feasible solutions can be termed itera-

tion. We partition the task into separate subproblems
and iterate between optimizations over one set of decision
variables subject to constraints implied by �xing others
at their best known values.

The factory layout task in Venkatadri, Rardin and
Montreuil [1994] provides an example. As indicated in
Figure 1, we wish to arrange machines on a factory oor
to process known job sequences at minimum total ow-
distance. What makes the problem unusually complex is
that we have several replicates (copies) of each machine
type, yet routings indicate only the sequence of machine
types required. We must know how work is assigned to
individual replicates in order to properly arrange them in
the factory, but we need to know their locations to make
a good assignment.

Figure 2 illustrates an iteration strategy for producing
a heuristic optimum. We choose an initial layout, and

2

assign flows
for fixed machine
locations

locate machines
for fixed flow
assignment

FIGURE 2 Iteration Strategy for Layout

then iterate between assigning ows to replicates assum-
ing the current layout vs. revising the layout assuming
the current assignment of replicate ows. There is no
guarantee of convergence, but experience shows that a
good solution often emerges after a few rounds.

COLUMN GENERATION

Column generation is another decomposition strategy
best suited to cases with some elements too intricate to
represent in a mathematical program. Instead, we pro-
ceed as in Figure 3, to decompose the task into one of
�nding columns or components of a solution that sat-
isfy all the intricacies, together with another selecting an
optimal collection of such components subject to shared
constraints.

Figure 4 depicts a classic application (see for example
Anbil, Gelman, Patty and Tanga [1991]). An airline must
organize or \pair" ights into closed sequences that will
be sta�ed by a particular ight crew. For example a
crew might originate at CHI in Figure 4, sta� ight 203

c

1
0
0
1
:
:
1
0
0

column enumerates impact on
common constraints

FIGURE 3 Column Generation

MIA

CHI

CHR

DFW

(101)

(402)

(203)

(204)

(305)

(406)

(407) (308)

(109)

(310)

(211)

(212)

FIGURE 4 Flight Crew Scheduling Example

to DFW, then cover ight 407 to MIA, before returning
to CHI with ight 109. We wish to sta� all ights at
minimum total pay and travel expense.

Besides involving an enormous number of crews and
ights, this problem is di�cult because crew schedules
are subject to a great many union and regulatory rules.
It would be nearly impossible to represent all such con-
siderations in a single mathematical.

The column generation approach to crew scheduling
follows the format of Figure 3. Special programs enu-
merate and evaluate the cost of possible pairings that
meet all constraints. These become columns of the link-
ing program, with aij = 1 when ight i is covered by
pairing j, and = 0 otherwise. What remains is an ILP
over the columns to select a minimum cost collection of
pairings that covers all ights.

Solution iterates between solving (at least the LP re-
laxation of) the linking problem and generating new
columns. Dual variable values from the main problem
may guide the construction of promising new columns,
but any convenient method can be used.

CONSTRUCTIVE SEARCH

Perhaps the most familiar heuristic optimization strat-
egy to industrial engineers is constructive search. Start-
ing from a null solution, we make decisions one by one
until a full solution has been constructed. Each decision
is made in a greedy or myopic way, doing the best we
can with the information available from what has already
been decided.

Constructive heuristics are obviously limited by the se-
quence dependence of this decision process. That is, an

3

1

2

3

4

5

6

7

8

9

10

11

12

13 14

15

16
17

18 19

20

depot

FIGURE 5 Truck Routing Example

early bad decision can seriously degrade later ones. Back-
tracking is sometimes added to allow undoing an early
decision and repeating the constructive search. However,
backtracking quickly becomes explosively time consum-
ing if the model is large.

Constructive heuristics are routinely employed in a va-
riety of applications including machine scheduling, cap-
ital budgeting, and many more. We will illustrate with
the truck routing problem of Figure 5 (see for example
Chung and Norback [1991]). A given set of stops with
known shipment loads must be organized into a collection
of routes like those depicted in the �gure.

Figure 6 sketches a constructive heuristic for the prob-
lem. Route generation begins with one or more \seed"
routes running from the depot to a distant stop and re-
turning. Each round of the heuristic then assigns an
unallocated stop to a route based on its distance from a
computed center of gravity of current points in the route.
Limits on truck capacity may also be considered. The
idea is to collect stops in natural clusters that can be ef-
�ciently routed, but there is no guarantee. Computation
terminates when all stops have been assigned.

IMPROVING SEARCH

In contrast to the one by one constructive approach,
improving search works with full solutions. Search begins
at one or more feasible choices for all decision variables.

1

2

3

4

5

6

7

8

9

10

11

12

13 14

15

16
17

18 19

20

depot

initial out and
back route

initial center
of gravity

insertion to
complete
a route

FIGURE 6 Constructive Routing Heuristic

Each step of the algorithm then considers a de�ned set of
moves or modi�cations to the current collection. Moves
producing the greatest improvement are adopted, and
the search continues.

One issue in the design of an improving heuristic is the
choice of the starting solution. Sometimes the search is
started at a random solution. Other applications employ
a constructive heuristic to obtain the �rst full solution.

Another concern is the selection of an appropriate
move set, or equivalently, the de�nition the neighborhood
composed of all solutions reachable from the current in
a single move. A good choice usually takes advantage
of whatever domain-speci�c knowledge may be available
about the speci�c application at hand.

The trivial maximizing example of Figure 7 illustrates
the dilemma that must be confronted in choosing a neigh-
borhood. Neighborhood 1 allows only moves to the
points immediately above, below, left or right of the cur-
rent solution. None yields a better objective value than
the current 100. Neighborhood 2 includes the 4 diago-
nal moves to produce a richer range of alternatives. Now
there is an improving point with value 120.

Real applications involve much more complex choices
of move sets, but the issue is the same. If a neighborhood
is too large, it cannot be searched e�ciently at each step.
If it is too small, the search is unlikely to uncover a good
enough solution.

4

current solution (maximizing)

100
90 85

80

9275 84

120 98

neighborhood 1

neighborhood 2

FIGURE 7 Alternative Neighborhoods

Another consideration is feasibility. All moves from
a current feasible solution would ideally lead to feasi-
ble alternatives. However, limiting moves in this way
may exclude most of the simplest to implement. Instead,
improving search schemes often allow infeasibility, but
penalize it in the objective function.

Our survey of improving search strategies will draw
upon a real, but easy to understand example (see for ex-
ample Horan and Coates [1990]). Each term universities
must formulate a timetable or schedule of �nal exami-
nations like the one illustrated in Figure 8. At Purdue,
one of m = 30 exam periods must be chosen for each of
over n = 2; 000 sections or groups of sections taking a
common �nal.

Costs arise from \conicts". If two sections have exams
scheduled at the same hour, then a common instructor
and any students enrolled in both sections experience an
inconvenience. We seek a choice of period for each exam
that minimizes conicts.

Our illustrations will begin from a randomly chosen
schedule and employ a very simple move set. Each move
changes the exam period of a single class. For example
in Figure 8, one move would reassign IE101 to period 2.

Per 1 Per 2 � � � Per m
IE 101 IE 314 � � � IE 414
IE 121 MA 212 � � � EE 201

...
...

...
...

FIGURE 8 Exam Scheduling Example

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25

ob
jv

al

steps

FIGURE 9 Local Search of Example

LOCAL SEARCH

The simplest implementation of the improving search
heuristic strategy is called local search or hillclimbing (see
for example Parker and Rardin [1988, Chapter 7]). Start-
ing from any initial feasible solution, each iteration con-
siders all solutions in the neighborhood of the current.
While any is feasible and better in the objective, the
search advances to the best and repeats. If no neigh-
bor is feasible and improving, we terminate with a local

optimum.

Figure 9 shows the evolution of such a local search of
our exam scheduling example. The 23 steps produce bet-
ter and better solutions until a local optimum is encoun-
tered with 1,210 conicts. No single exam move can now
produce an improvement, so the local search terminates.

Many variations can improve the e�ciency of straight-
forward local search. Only parts of the neighborhood
may be searched at each step, or di�erent move sets may
be used at di�erent times.

MULTISTART

The multistart variation on local search takes advan-
tage of the fact that the local optimumproduced depends
on where the search started. Several di�erent starting
points are employed, with each carried to a local solu-
tion. The best of these results is our heuristic optimum.

Figure 10 illustrates the evolution of multistart on our
exam example. Three di�erent starts lead to local op-

5

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80 90 100

ob
jv

al

steps

FIGURE 10 Multistart Search of Example

tima of value 1,210, 1,182 and 1,105. The best would be
reported as an approximate optimum.

TABU SEARCH

Another obvious extension of the local search idea is to
allow nonimproving moves. For example, with neighbor-
hood 1 in Figure 7, we could escape the local optimumby
moving to the best neighbor with value 92 even though
it is not improving.

There is an immediate di�culty. The only improving
neighbor of the new (value 92) current point may be the
previous one (value 100). Thus, simply moving to the
best neighbor will usually lead to in�nite cycling.

Tabu search (see Glover and Laguna [1993]) is a variant
of local improvement that prevents cycling by temporar-
ily forbidding (hence the name tabu) some moves includ-
ing any that would return us to the point just visited.
Each iteration takes the best non-tabu move, whether or
not it improves. The best solution encountered within
a speci�ed iteration limit is reported as a heuristic opti-
mum.

Much of the design of a tabu search revolves around
the policy for forbidding moves. If too many moves are
forbidden, the search will make little progress. If too few
are restricted, the search will tend to remain in a local
area, and thus not pass through a diverse enough set of
points to produce a good heuristic optimum.

In our exam scheduling example, these considerations
lead to a tabu policy forbidding a move of the exam just

800

900

1000

1100

1200

1300

1400

1500

0 20 40 60 80 100 120 140

ob
jv

al

steps

FIGURE 11 Tabu Search of Example

reassigned for 5 steps. Typically for tabu implementa-
tions, this policy includes more than just the move un-
doing the most recent choice. Experience shows that a
wider class of moves should be restricted. Notice also
that the restriction is temporary. After 5 steps the for-
bidden moves will be reactivated.

Figure 11 shows the evolution of a tabu search using
this rule. The best solution, with 959 conicts, was en-
countered at step 107 of a search allowed to run 150 it-
erations.

The plot in Figure 11 shows a general downward trend
reecting the underlying steepest descent structure of the
tabu search. Notice, however, that occasional nonim-
proving moves ultimately led to a better result than pure
hillclimbing Figure 9.

Many re�nements have been tried in di�erent appli-
cations of tabu search. It is customary to override the
tabu status of a move if it would lead to an unusually
good solution (a feature termed aspiration). Other im-
plementations keep several lists of tabu moves, search
only part of the neighborhood at each iteration, bias the
search towards moves that have proved especially helpful,
or employ multiple starting solutions.

Nearly all e�ective tabu algorithms also have some
mechanism for balancing the diversi�cation of the search
over the feasible set vs. intensi�cation in a promising
region. By tightening the tabu policy, or favoring under-
utilized moves, the search can be guided into new parts
of the space. A later stage can then focus the search in

6

a more limited region in order to discover its best local
optimum.

SIMULATED ANNEALING

Simulated annealing is another popular variant of im-
proving search (see for example Aarts and Korst [1989]).
It uses randomness to avoid cycling on nonimproving
moves.

Like all improving searches, it begins with a feasible
solution and a de�ned set of moves. At each step, how-
ever, a move is chosen randomly. If the move improves,
it is immediately adopted. If the move does not improve,
it is accepted with probability

e�degradation=temperature (1)

and otherwise a new move is chosen and the process re-
peated. The best solution encountered within a speci�ed
iteration limit is reported as a heuristic optimum.

The \degradation" in the exponent of probability (1)
measures how much the test solution worsens the ob-
jective function value (usually expressed as the absolute
di�erence of the current and test point values). Thus
a solution that greatly degrades the objective value has
some chance to be accepted, but one with a less dra-
matic worsening has a higher probability (less negative
exponent).

The temperature in simulated annealing controls its
randomness. A very high temperature in expression (1)
makes the exponent nearly zero, so that almost all moves
are accepted. A temperature approaching zero renders
the exponent highly negative for any degradation at all.

Practical implementations of simulated annealing be-
gin with the temperature relatively high and reduce it to-
ward zero over the life of the search. The idea is to allow
the search to wander randomly in its early stages, focus-
ing only after it has discovered a particularly promising
region. A typical pattern begins at a given temperature
T0 and multiplies by a factor � 2 (0; 1) after each k steps.

Figure 12 shows the result of such a policy on our exam
scheduling example. Initially, the search jumps around
dramatically. As the temperature declines, however, the
search performs much more like pure hillclimbing. The
best solution (value 933) was encountered after about
2,700 moves of 3,000 tried.

Notice that the number of steps allowed in simulated
annealing Figure 12 is far greater that the earlier ap-
proaches. This is typical, and reects two considerations.

500

1000

1500

2000

2500

3000

3500

4000

4500

0 500 1000 1500 2000 2500 3000

ob
jv

al

steps

FIGURE 12 Simulated Annealing on Example

First, the cost per step is usually much lower than hill-
climbing or tabu. There may be a few rejections, but a
typical simulated annealing step requires the evaluation
of only a small number of neighbors. By contrast local
search and tabu methods usually test all or much of the
neighborhood at each step.

The other consideration is pragmatic. Experience in
most applications shows that a fairly large number of
steps will be required if the highly random simulated an-
nealing strategy is to yield a good heuristic optimum.

Like all the other heuristic methods, speci�c imple-
mentations of simulated annealing may introduce a host
of variations on the main strategy. Particular schemes
may raise and lower the temperature more than once, or
vary the move sets as the search evolves, or start from
several initial solutions.

Another appeal of simulated annealing is a theoretical
convergence property. If a sequence of the allowed moves
can reach any solution from any other, and temperature
is allowed to approach zero, simple Markov chain analysis
can show that simulated annealing will come upon an
exact optimal solution in a �nite number of steps with
probability one. It is important to realize, however, that
the real number of steps required may be hopelessly vast.

GENETIC ALGORITHMS

The most di�erent of the recent variations on local
improvement attempts to mimic the biological evolution
process for discovering good solutions. Such genetic algo-

7

Solution Objval Probability
(0,1,1,0,0) 40 0.20
(1,1,0,1,0) 60 0.30
(0,1,1,1,0) 100 0.50

total 200 1.00

FIGURE 13 Population Example

rithms (see for example Goldberg [1989]) maintain a col-
lection or population of solutions throughout the search.
One or more pairs of members are chosen randomly at
each iteration with a bias toward those with best objec-
tive values. Then the chosen pairs breed by exchanging
parts of their content in an operation called crossover.
The best of the descendants form the next population,
and the process continues. On occasion one or more of
the solutions in the population may also be randomly
mutated by changing a single component.

To illustrate how breeding pairs are selected, consider
the 3-member population of solutions for a maximize
problem in Figure 13. The common computation de-
picted �rst sums the objective values of solutions in the
population. Any individual is then selected for breeding
with probability

(individual solution value)

(population total)
(2)

The idea is to allow all individuals some chance, but favor
those with best objective values.

The main move form in genetic algorithms is crossover.
Figure 14 illustrates. A cut point is randomly chosen
within the breeding pair of solutions. Descendants are
formed by combining the initial components of the �rst
solution with the last components of the second and vice
versa.

In theory such genetic algorithms are domain indepen-
dent because they require no explicit notion of a neigh-
borhood. However, this can be a serious disadvantage.
There is no guarantee that crossover operations produce

(0,0,1,0,0,1,0,1,0)
(1,0,1,0,0,1,1,0,1)

(0,0,1,0,0,1,1,0,1)
(1,0,1,0,0,1,0,1,0)

FIGURE 14 Crossover Example

anything like a feasible solution. Thus practical imple-
mentations of genetic algorithms tend to become deeply
involved in schemes for pricing infeasibility.

A related issue concerns the arrangement of decision
variables along solution vectors. A pair of components
located next to each other will tend to be unchanged as
crossover proceeds. If the same components are located
at opposite ends of the solution vector, almost every step
will change their mix. Thus domain speci�c information
will almost certainly be used to sequence the solution
vector of the genetic algorithm.

A �nal issue concerns the sampling scheme illustrated
in Figure 13 and probability (2). The computationmakes
sense if we are maximizing the objective function, but not
if we are minimizing. It is natural to weight minimize
solutions on the basis of some complement

(constant) � (individual solution value)

Still, probabilities will change with the selected constant.

CONCLUSIONS

Which heuristic optimization strategy is best for any
application obviously varies with the environment. Still,
this brief overview shows there are a wide range of pos-
sibilities that deserve consideration. A case admitting
strong LP or Lagrangian formulations is a good candidate
for the relaxation approach. Problems where much, but
not all of the structure can be modeled as a mathemat-
ical program invite decomposition. If time or problem
size permits generation of only a single solution, con-
structive algorithms are likely to be preferred. When
natural solution neighborhoods are available, one of the
improving search implementations may be most appro-
priate. Within the improving category, tabu search will
work better when its steepest descent perspective is sup-
ported by strong domain knowledge, while simulated an-
nealing or genetic algorithms might do better with a less
well de�ned setting.

All the methods are also open to creative combina-
tion. Relaxation or improving search may be used in
some parts of a decomposition strategy. A constructive
search may provide the starting solution for tabu or sim-
ulated annealing. Best features of one of the variations
on improving search can usually be adapted to improve
another.

8

All these combinations mean there is room for much
more heuristic optimization research. Systematic pre-
sentations like this one will also hopefully lead to more
treatment of the subject in academic programs.

REFERENCES

Aarts, E. and J. Korst [1989], Simulated Annealing and

Boltzmann Machines: A Stochastic Approach to

Combinatorial Optimization and Neural Computing,
John Wiley.

Anbil, E., E. Gelman, B. Patty and R. Tanga [1991],
\Recent Advances in Crew-Pairing Optimization at
American Airlines," Interfaces, 21:1, 62-74.

Chung, H.K. and J.B. Norback [1991], \A Clustering
and Insertion Heuristic Applied to a Large Rout-
ing Problem in Food Distribution," Journal of the

Operational Research Society, 42, 555-564.

Glover, F. and M. Laguna [1993], in C. Reeves edi-
tor, Modern Heuristic Techniques for Combinatorial

Problems, John Wiley.

Goldberg, D.E. [1989], Genetic Algorithms in Search,

Optimization and Machine Learning, Addison-
Wesley.

Horan, C.J. and W.D. Coates [1990], \Using More Than
ESP to Schedule Final Exams: Purdue's Examina-
tions Scheduling Procedure II (ESP II), College and
University Computer Users Conference Proceedings,

35, 133-142.

Parker, R.G. and R.L. Rardin [1988], Discrete Optimiza-

tion, Academic Press.

Reeves, C. [1993], editor, Modern Heuristic Techniques

for Combinatorial Problems, John Wiley.

Venkatadri, U., R.L. Rardin and B. Montreuil [1994],
\Fractal Layout of Factories: A Design Op-
timization Methodology," presentation to the
ORSA/TIMS Detroit meeting, October.

BIOGRAPHICAL SKETCH

RONALD L. RARDIN is a Professor in the School of
Industrial Engineering at Purdue University. He joined
Purdue in 1982 after nine years on the faculty of the
School of Industrial and Systems Engineering at the
Georgia Institute of Technology. Dr. Rardin's teach-
ing and research interests center on large-scale discrete
optimization|especially network design. He is co-author
of numerous journal articles in that �eld and a com-
prehensive book, Discrete Optimization. He is presently
nearing completion of an undergraduate text on mathe-
matical programming entitled Modeling and Analysis in

Operations Research.

9

