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Chapter 2

The Ant Colony Optimization
Meta-Heuristic

2.1 Introduction

Ant algorithms are multi-agent systems in which the behavior of each single agent, called
artificial ant or ant for short in the following, is inspired by the behavior of real ants. Ant
algorithms are one of the most successful examples of swarm intelligent systems [3], and
have been applied to many types of problems, ranging from the classical traveling salesman
problem, to routing in telecommunications networks. In this section we will focus on the
ant colony optimization (ACO) meta-heuristic [18], which defines a particular class of ant
algorithms, called in the following ACO algorithms.

ACO algorithms have been inspired by the following experience run by Goss et al. [31]
using a colony of real ants. A laboratory colony of Argentine ants (Iridomyrmex humilis)
is given access to a food source in an arena linked to the colony’s nest by a bridge with
two branches of different length (see Figure 2.1). Branches are arranged in such a way
that ants going in either direction (from the nest to the food source or vice versa) must
choose between one branch or the other. The experimental observation is that, after a
transitory phase which can last a few minutes, most of the ants use the shortest branch.
It is also observed that the colony’s probability of selecting the shortest branch increases
with the difference in length between the two branches. The emergence of this shortest
path selection behavior can be explained in terms of autocatalysis (positive feedback) and
differential path length, and it is made possible by an indirect form of communication,
known as stigmergy [32], mediated by local modifications of the environment.

In fact, Argentine ants, while going from the nest to the food source and vice versa,
deposit a chemical substance, called pheromone, on the ground. When they arrive at a
decision point, like the intersection between the shorter and the longer branch, they make
a probabilistic choice biased by the amount of pheromone they smell on the two branches.
This behavior has an autocatalytic effect because the very fact of choosing a path will
increase the probability that it will be chosen again by future ants. At the beginning of
the experiment there is no pheromone on the two branches and therefore ants going from
the nest to the food source will choose any of the two branches with equal probability.
Due to differential branch length, the ants choosing the shortest branch will be the first to
reach the food source. When they, in their path back to the nest, reach the decision point,
they will see some pheromone trail on the shorter path, the trail they released during
the forward travel, and will choose it with higher probability than the longer one. New
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Figure 2.1: Experimental apparatus for the bridge experiment. Branches have different
length. Ants move from the nest to the food source and back.

pheromone will be released on the chosen path, making it even more attractive for the
subsequent ants. While the process iterates, pheromone on the shorter path is deposited
at a higher rate than on the longer one, making the shorter path more and more selected
until all ants end up using it.

In the next sections we show how these simple ideas can be engineered and put to
work so that a colony of artificial ants can find good solutions to difficult optimization
problems.

2.2 The simple ant colony optimization algorithm

In this section a very simple ant-based algorithm is presented to illustrate the basic be-
havior of the ACO meta-heuristic and to put in evidence its basic components.

The main task of each artificial ant, similarly to their natural counterparts, is to find
a shortest path between a pair of nodes on a graph on which the problem representation
is suitably mapped.

Let G = (N,A) be a connected graph with n = |N | nodes. The simple ant colony op-
timization (S-ACO) algorithm can be used to find a solution to the shortest path problem
defined on the graph G, where a solution is a path on the graph connecting a source node
s to a destination node d, and the path length is given by the number of hops in the path
(see Figure 2.2).

To each arc (i, j) of the graph is associated a variable τij called artificial pheromone
trail, pheromone trail for short in the following. Pheromone trails are read and written by
ants. The amount (intensity) of pheromone trail is proportional to the utility, as estimated
by the ants, of using that arc to build good solutions.

Each ant applies a step-by-step constructive decision policy to build problem’s solu-
tions. At each node local information, maintained on the node itself and/or on its outgoing
arcs, is used in a stochastic way to decide the next node to move to.

The decision rule of an ant k located in node i uses the pheromone trails τij to compute
the probability with which it should choose node j ∈ Ni as the next node to move to,1

where Ni is the set of one-step neighbors of node i:

pkij =


τij∑

j∈Ni
τij

if j ∈ Ni

0 if j /∈ Ni

(2.1)

1At the beginning of the search process, a small amount of pheromone τ0 is assigned to all the arcs.
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Figure 2.2: Ants build solutions, that is paths, from a source to a destination node. The
ants choosing the solid line path will arrive sooner to the destination and will therefore be
the first to bias search of ants moving back to the source node.

While building a solution ants deposit pheromone information on the arcs they use. In
S-ACO ants deposit a constant amount ∆τ of pheromone. Consider an ant that at time
t moves from node i to node j. It will change the pheromone value τij as follows:

τij(t)← τij(t) + ∆τ (2.2)

By this rule, which simulates real ants’ pheromone depositing on arc (i, j), an ant using
the arc connecting node i to node j increases the probability that ants will use the same
arc in the future. As in the case of real ants, autocatalysis and differential path length are
at work to favor the emergence of short paths.

To avoid a quick convergence of all the ants towards a sub-optimal path, an exploration
mechanism is added: similarly to real pheromone trails, artificial pheromone trails “evap-
orate”. In this way pheromone intensity decreases automatically, favoring the exploration
of different arcs during the whole search process. The evaporation is carried out in a simple
way, decreasing pheromone trails in an exponential way, τ ← (1 − ρ)τ, ρ ∈ (0, 1] at each
iteration of the algorithm. Preliminary experiments run with S-ACO using a simple graph
modeling the experimental apparatus of Figure 2.1 have shown that the algorithm effec-
tively finds the shortest path between the simulated nest and food sources. Experiments
have also shown that if we increase the complexity of the searched graph, for example by
connecting the nest to the food source by means of more than two possible paths, the
behavior of the algorithm tends to become less stable and the value given to parameters
becomes critical.

S-ACO must therefore be taken for what it is: a didactic example that, because of its
simplicity, has a number of limitations. The algorithms defined in the following of this
and of the following chapters share the basic properties of S-ACO, but are enriched with
extra capabilities which help to overcome S-ACO limitations. For example, we can make
the amount of pheromone deposited by ants proportional to the quality of the solution
built or being generated by the ant so that pheromone information becomes more useful in
directing ants search. Also, because in many problems some form of heuristic information
is available at the nodes, it would be desirable to have ants able to use it.

Another important point is that it would be desirable to enlarge the class of problems
that can be attacked by ACO algorithms. S-ACO can be applied only to shortest path
problems without additional constraints: If we want to use it to find a shortest Hamiltonian
path on a graph, that is, a path which visits all the nodes once and only once, we need to
give our ants at least some limited form of memory.

In the next sections we will introduce the ACO meta-heuristic, which builds on the
S-ACO model enriching artificial ants with a number of capacities that do not find their
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counterpart in real ants, but that allow to overcome the above-listed limitations of the
simple model.

2.3 The ACO meta-heuristic

ACO algorithms, that is, instances of the ACO meta-heuristic introduced in the following
of this section, can be applied to discrete optimization problems that can be characterized
as follows:

• A finite set of components C = {c1, c2, . . . , cNC} is given.

• A finite set L of possible connections/transitions among the elements of C is defined
over a subset C̃ of the Cartesian product C×C, L = {lcicj | (ci, cj) ∈ C̃}, |L| ≤ N2

C .

• For each lcicj ∈ L a connection cost function Jcicj ≡ J(lcicj , t), possibly parametrized
by some time measure t, can be defined.

• A finite set of constraints Ω ≡ Ω(C,L, t) is assigned over the elements of C and L.

• The states of the problem are defined in terms of sequences s = 〈ci, cj, . . . , ck, . . .〉
over the elements of C (or, equivalently, of L). If S is the set of all possible sequences,
the set S̃ of all the (sub)sequences that are feasible with respect to the constraints
Ω(C,L, t), is a subset of S. The elements in S̃ define the problem’s feasible states.
The length of a sequence s, that is, the number of components in the sequence, is
expressed by |s|.

• A neighborhood structure is defined as follows: the state s2 is said to be a neighbor
of s1 if (i) both s1 and s2 are in S, (ii) the state s2 can be reached from s1 in one
logical step, that is, if c1 is the last component in the sequence determining the state
s1, it must exists c2 ∈ C such that lc1c2 ∈ L and s2 ≡ 〈s1, c2〉.

• A solution ψ is an element of S̃ satisfying all the problem’s requirements. A solution
is said multi-dimensional if it is defined in terms of multiple distinct sequences over
the elements of C.

• A cost Jψ(L, t) is associated to each solution ψ. Jψ(L, t) is a function of all the costs
Jcicj of all the connections belonging to the solution.

Consider the graph G = (C,L) associated to a given discrete optimization problem
instance as above defined. The solutions to the optimization problem can be expressed in
terms of feasible paths on the graph G. ACO algorithms can be used to find minimum
cost paths (sequences) feasible with respect to the constraints Ω.2

In ACO algorithms a population (colony) of agents (or ants) collectively solve the
optimization problem under consideration by using the above graph representation. In-
formation collected by the ants during the search process is encoded in pheromone trails
τij associated to connection lij.

3 Pheromone trails encode a long-term memory about the
whole ant search process. Depending on the problem representation chosen, pheromone

2For example, in the traveling salesman problem defined in Section 2.4.1, C is the set of cities, L is
the set of arcs connecting cities, and a solution ψ is an Hamiltonian circuit.

3Here and in the following, we simplify notation by setting lcicj = lij .

4



trails can be associated to all problem’s arcs, or only to some of them. Arcs can also
have an associated heuristic value ηij representing a priori information about the problem
instance definition or run-time information provided by a source different from the ants.

The ants’ colony presents the following general characteristics:

• Although each ant is complex enough to find a (probably poor) solution to the
problem under consideration, good quality solutions can only emerge as the result
of the collective interaction among the ants.

• Each ant makes use only of private information and of information local to the node4

it is visiting.

• Ants communicate with other ants only in an indirect way, mediated by the infor-
mation they read/write in the variables storing pheromone trail values.

• Ants are not adaptive themselves. On the contrary, they adaptively modify the way
the problem is represented and perceived by other ants.

Ants of the colony have the following properties:

• An ant searches for minimum cost feasible solutions Ĵψ = minψ Jψ(L, t).

• An ant k has a memory Mk that it can use to store information on the path it
followed so far. Memory can be used (i) to build feasible solutions, (ii) to evaluate
the solution found, and (iii) to retrace the path backward.

• An ant k in state sr = 〈sr−1, i〉 can move to any node j in its feasible neighborhood
N k
i , defined as N k

i = {j | (j ∈ Ni) ∧ (〈sr, j〉 ∈ S̃)}.

• An ant k can be assigned a start state sks and one or more termination conditions
ek.5

• Ants start from the start state and move to feasible neighbor states, building the
solution in an incremental way. The construction procedure stops when for at least
one ant k at least one of the termination conditions ek is satisfied.

• An ant k located on node i can move to a node j chosen in N k
i . The move is selected

applying a probabilistic decision rule.

• The ants’ probabilistic decision rule is a function of (i) the values stored in a node
local data structure Ai = [aij] called ant-routing table, obtained by a functional
composition of node locally available pheromone trails and heuristic values, (ii) the
ant’s private memory storing its past history, and (iii) the problem constraints.

• When moving from node i to neighbor node j the ant can update the pheromone
trail τij on the arc (i, j). This is called online step-by-step pheromone update.

4In the following, the terms node and component, as well as arc and connection/transition, will be
used interchangeably.

5Usually, the start state is expressed as a unit length sequence, that is, a single component.
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• Once built a solution, the ant can retrace the same path backward and update the
pheromone trails on the traversed arcs. This is called online delayed pheromone
update.

• Once it has built a solution, and, if the case, after it has retraced the path back to
the source node, the ant dies, freeing all the allocated resources.

Informally, the behavior of ants in an ACO algorithm can be summarized as follows. A
colony of ants concurrently and asynchronously move through adjacent states of the prob-
lem by moving through neighbor nodes of G, as shown in the S-ACO algorithm. They
move by applying a stochastic local decision policy that makes use of the information con-
tained in the node-local ant-routing tables. By moving, ants incrementally build solutions
to the optimization problem. Once an ant has built a solution, or while the solution is
being built, the ant evaluates the (partial) solution and deposits information about its
goodness on the pheromone trails of the connections it used. This pheromone information
will direct the search of the future ants.

Besides ants’ activity, an ACO algorithm include two more procedures: pheromone
trail evaporation and daemon actions.6 Pheromone evaporation is the process by means of
which the pheromone trail intensity on the connections automatically decreases over time.
From a practical point of view, pheromone evaporation is needed to avoid a too rapid
convergence of the algorithm towards a sub-optimal region. It implements a useful form
of forgetting, favoring the exploration of new areas of the search space. Daemon actions
can be used to implement centralized actions which cannot be performed by single ants.
Examples are the activation of a local optimization procedure, or the collection of global
information that can be used to decide whether it is useful or not to deposit additional
pheromone to bias the search process from a non-local perspective. As a practical example,
the daemon can observe the path found by each ant in the colony and choose to deposit
extra pheromone on the arcs used by the ant that made the shortest path. Pheromone
updates performed by the daemon are called offline pheromone updates.

In Figure 2.3 the ACO meta-heuristic behavior is described in pseudo-code. The main
procedure of the ACO meta-heuristic manages, via the schedule activities construct,
the scheduling of the three above discussed components of an ACO algorithm: (i) ants’
generation and activity, (ii) pheromone evaporation, and (iii) daemon actions. It is impor-
tant to note that the schedule activities construct does not specify how these three
activities are scheduled and synchronized and, in particular, whether they should be ex-
ecuted in a completely parallel and independent way, or if some kind of synchronization
among them is necessary. This leaves the designer the freedom to specify the way these
three procedures should interact.

Although ACO algorithms are suitable to find minimum cost (shortest) paths on a
graph in general, it is important to note that they are an interesting approach only for
those shortest path problems to which more classical algorithms like dynamic programming
or label correcting methods [1] cannot be efficiently applied. This is the case, for example,
for the following types of shortest path problems:

• NP-hard problems, for which the dimension of the full state-space graph is expo-
nential in the dimension of the problem representation. In this case, ants make use
of the much smaller graph G, built from the problem’s components, and use their

6The daemon actions component is optional.
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1 procedure ACO meta-heuristic()
2 while (termination criterion not satisfied)
3 schedule activities
4 ants generation and activity();
5 pheromone evaporation();
6 daemon actions(); {optional}
7 end schedule activities
8 end while
9 end procedure

1 procedure ants generation and activity()
2 while (available resources)
3 schedule the creation of a new ant();
4 new active ant();
5 end while
6 end procedure

1 procedure new active ant() {ant lifecycle}
2 initialize ant();
3 M = update ant memory();
4 while (current state 6= target state)
5 A = read local ant-routing table();
6 P = compute transition probabilities(A,M,Ω);
7 next state = apply ant decision policy(P ,Ω);
8 move to next state(next state);
9 if (online step-by-step pheromone update)
9 deposit pheromone on the visited arc();

10 update ant-routing table();
11 end if
11 M = update internal state();
12 end while
13 if (online delayed pheromone update)
13 foreach visited arc ∈ ψ do
14 deposit pheromone on the visited arc();
15 update ant-routing table();
16 end foreach
17 end if
17 die();
18 end procedure

Figure 2.3: The ACO meta-heuristic in pseudo-code. Comments are enclosed in braces.
The procedure daemon actions() at line 6 of the ACO meta heuristic() procedure is
optional and refers to centralized actions executed by a daemon possessing global knowl-
edge. In the new active ant() procedure, the target state (line 4) refers to a complete
solution built by the ant, while the step-by-step and delayed pheromone updating proce-
dures at lines 9-10 and 14-15 are often mutually exclusive. When both of them are absent
the pheromone is deposited by the daemon.
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memory to generate feasible solutions which in most ACO implementations are then
taken to a local optimum by a problem specific local optimizer.

• Those shortest path problems in which the properties of the problem’s graph rep-
resentation change over time concurrently with the optimization process, that has
to adapt to the problem’s dynamics. In this case, the problem’s graph can even be
physically available (like in networks problems), but its properties, like the value of
connection costs Jcicj(t), can change over time. In this case we conjecture that the
use of ACO algorithms becomes more and more appropriate as the variation rate of
costs Jcicj(t) increases and/or the knowledge about the variation process diminishes.

• Those problems in which the computational architecture is spatially distributed, as
in the case of parallel and/or network processing. Here ACO algorithms, due to
their intrinsically distributed and multi-agent nature that well matches these types
of architectures, can be very effective.

In the following section we will consider the application of the ACO-meta-heuristic
to two paradigmatic problems belonging to the above defined classes of problems: the
traveling salesman problem (TSP) and the adaptive routing in communications networks.
TSP is the prototypical representative of NP-hard combinatorial optimization problems
[28] where the problem instance is statically assigned and the information is globally
available. On the contrary, in the problem of adaptive routing in communications networks
an exogenous process (the incoming data traffic) makes the problem instance change over
the time, and temporal constraints impose to solve the problem in a distributed way.

Chapters 3, 4, and 5 of this book illustrate further applications of the ACO meta-
heuristic to NP-hard combinatorial optimization problems, while further and more detailed
examples of applications to adaptive routing can be found in [13, 15, 45, 53].

2.4 ACO for the traveling salesman problem

2.4.1 The traveling salesman problem

The traveling salesman problem plays an important role in ant colony optimization because
it was the first problem to be attacked by these methods (see [16, 21, 22]). The TSP was
chosen for many reasons: (i) it is a problem to which the ant colony metaphor is easily
adapted, (ii) it is one of the most studied NP -hard [37, 43] problems in combinatorial
optimization, and (iii) it is very easily explained, so that the algorithm behavior is not
obscured by too many technicalities.

The traveling salesman problem, using the terminology introduced in the previous
section, can be defined as follows. Let C be a set of components, representing cities, L be
a set of connections fully connecting the elements in C, and Jcicj be the cost (length) of
the connection between ci and cj, that is, the distance between cities i and j. The TSP is
the problem of finding a minimal length Hamiltonian circuit on the graph G = (C,L). An
Hamiltonian circuit of graph G is a closed tour ψ visiting once and only once all the NC

nodes of G. Its length is given by the sum of the lengths Jcicj of all the arcs of which it is
composed. Distances need not be symmetric (in an asymmetric TSP Jcicj can be different
from Jcjci), and the graph need not be fully connected: if it is not, the missing arcs can
be added giving them a very high length.
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In the following we will present Ant System, a paradigmatic example of how ACO
algorithms can be applied to the TSP. Extensions of Ant System can be found in [6, 20, 48].

2.4.2 Ant System for the TSP

Ant System (AS), which was the first (1991) [16, 21] ACO algorithm, was designed as
a set of three ant algorithms differing for the way the pheromone trail was updated by
ants. Their names were: ant-density, ant-quantity, and ant-cycle. A number of ant al-
gorithms, including the ACO meta-heuristic, have later been inspired by ant-cycle, the
most performing of the three7. Many of these implementations have found interesting and
successful applications (see Section 2.8, or [18] for a more detailed overview).

In Figure 2.4 the new active ant() procedure used by the AS algorithm is shown.
This can be informally described as follows. A number m ≤ NC of ants is positioned in

1 procedure new active ant(ant identifier)
2 k = ant identifier; i = get city(); sks = i; sk(t) = sks ;
3 Mk(t) = i;
4 while ( sk(t) 6= NC )

5 foreach j ∈ N k
i do read(aij);

6 foreach j ∈ N k
i do [P ]ij = pij =

aij∑
l∈N ki ail

;

7 next node = apply probabilistic rule(P ,N k
i ) ;

8 i = next node; sk(t) = 〈sk(t), i〉 ;
9 −

10 −
11 Mk(t) = i;
12 end while
13 foreach lij ∈ ψk(t) do
14 τij(t)← τij(t) + 1/Jkψ ;

15 aij(t)←
[τij(t)]

α[ηij]
β∑

l∈N ki [τil(t)]α[ηil]β
;

16 end foreach
17 free all allocated resources();
18 end procedure

Figure 2.4: Pseudo-code of Ant System’s new active ant() procedure. Line numbers
are put in one-to-one correspondence with those of the ACO meta-heuristic pseudo-code
of Figure 2.3. Instruction at lines 9 and 10 are empty because no online step-by-step
pheromone update is performed. Pheromone evaporation is performed between between
lines 14 and 15 by the pheromone evaporation() procedure of Figure 2.3, which is acti-
vated by an appropriate synchronization mechanism (not shown in the pseudo-code).

parallel on m cities. The ants’ start state, that is, the start city, can be chosen randomly,
and the memory Mk of each ant k is initialized by adding the current start city to the
set of already visited cities (initially empty). Ants then enter a cycle (Figure 2.4, lines
4→ 12) which lasts NC iterations, that is, until each ant has completed a tour.

7Hereafter, as it has been done in most published papers, we identify Ant System with ant-cycle.
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During each step an ant located on node i considers the feasible neighborhood, reads
the entries aij’s of the ant-routing table Ai of node i (figure 2.4, line 5), computes the
transition probabilities (line 6), and then applies its decision rule to choose the city to
move to (line 7), moves to the new city (line 8), and updates its memory (line 11).

Once ants have completed a tour (which happens synchronously, given that during each
iteration of the while loop each ant adds a new city to the tour under construction), they
use their memory to evaluate the built solution and to retrace the same tour backward and
increase the intensity of the pheromone trails τij of visited connections lij (lines 13→ 16).
This has the effect of making the visited connections become more desirable for future
ants. Then the ants die, freeing all the allocated resources. In AS all the ants deposit
pheromone and no problem-specific daemon actions are performed. The triggering of
pheromone evaporation happens after all ants have completed their tours. Of course, it
would be easy to add a local optimization daemon action, like a 3-opt procedure [38]; this
has been done in most of the ACO algorithms for TSP that have developed after AS (see
for example [20, 50]).

The amount of pheromone trail τij(t) maintained on connection lij is intended to rep-
resent the learned desirability of choosing city j when in city i (which also corresponds
to the desirability that the arc lij belong to the tour built by an ant). The pheromone
trail information is changed during problem solution to reflect the experience acquired by
ants during problem solving. Ants deposit an amount of pheromone proportional to the
quality of the solutions ψ they produced: the shorter the tour generated by an ant, the
greater the amount of pheromone it deposits on the arcs which it used to generate the
tour.8 This choice helps to direct search towards good solutions.

The memory (or internal state)Mk of each ant contains the already visited cities and
is called tabu list9. The memory Mk is used to define, for each ant k, the set of cities
that an ant located on city i still has to visit. By exploiting Mk an ant k can build
feasible solutions, that is, it can avoid to visit a city twice. Also, memory allows the ant to
compute the length of the tour generated and to cover the same path backward to deposit
pheromone on the visited arcs.

The ant-routing table Ai = [aij(t)] of node i, where Ni is the set of all the neighbor
nodes of node i, is obtained by the following functional composition of pheromone trails
τij(t) and local heuristic values ηij:

10

aij =
[τij(t)]

α[ηij]
β∑

l∈Ni
[τil(t)]

α[ηil]
β
∀j ∈ Ni (2.3)

where α and β are two parameters that control the relative weight of pheromone trail
and heuristic value.

The probability pkij(t) with which at the t-th algorithm iteration an ant k located in
city i chooses the city j ∈ N k

i to move to is given by the following probabilistic decision
rule:

8As for most of the ACO implementations, there is no per-connection credit assignment: all the
connections belonging to a solution receive the same amount of pheromone depending on the quality of
the solution the connection is part of.

9The term tabu list is used here to indicate a simple memory that contains the set of already visited
cities, and has no relation with tabu search [29, 30].

10The heuristic values used are ηij = 1/dij , where dij is the distance between cities i and j. In other
words, the shorter the distance between two cities i and j, the higher the heuristic value ηij .
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pkij(t) =
aij(t)∑

l∈N ki

ail(t)
(2.4)

where N k
i ⊆ Ni is the feasible neighborhood of node i for ant k (that is, the set of

cities ant k has not yet visited) as defined by using the ant private memory Mk and the
problem constraints.

The role of the parameters α and β is the following. If α = 0, the closest cities are
more likely to be selected: this corresponds to a classical stochastic greedy algorithm (with
multiple starting points since ants are initially randomly distributed on the nodes). If on
the contrary β = 0, only pheromone amplification is at work: this method will lead to
the rapid emergence of a stagnation, that is, a situation in which all ants make the same
tour which, in general, is strongly sub-optimal [22]. An appropriate trade-off has to be set
between heuristic value and trail intensity.

After all ants have completed their tour, each ant k deposits a quantity of pheromone
∆τ k(t) = 1/Jkψ(t) on each connection lij that it has used, where Jkψ(t) is the length of tour
ψk(t) done by ant k at iteration t:

τij(t)← τij(t) + ∆τ k(t), ∀ lij ∈ ψk(t), k = 1, . . . ,m (2.5)

where m is the number of ants at each iteration (maintained constant) and the total
number of ants is set to m = NC .11 This way of setting the value ∆τ k(t) makes it a
function of the ant’s performance: the shorter the tour done, the greater the amount of
pheromone deposited.

After pheromone updating has been performed by the ants12, pheromone evaporation
is triggered: the following rule is applied to all the arcs lij of the graph G

τij(t)← (1− ρ)τij(t) (2.6)

where ρ ∈ (0, 1] is the pheromone trail decay coefficient (the initial amount of pheromone
τij(0) is set to a small positive constant value τ0 on all arcs).

2.5 ACO for routing in communications networks

2.5.1 The routing problem

The generic routing problem in communications networks can be informally stated as the
problem of building and using routing tables to direct data traffic so that some measure
of network performance13 is maximized.

We can use the terminology introduced in Section 2.3 to give a formal definition of the
routing problem. Let the sets C and L correspond respectively to the sets of processing

11These parameters settings, and those for α, β and ρ, set respectively set to 1, 5 and 0.5, were
experimentally found to be good by Dorigo [16].

12In the original ant system [16, 21] pheromone evaporation was performed before pheromone updating.
The algorithm presented here and the original one are exactly the same if the values ∆τk(t) used in
Equation 2.5 are set to ∆τk(t) = 1/((1− ρ) · Jkψ(t)).

13The choice of a measure of network performance is a function of the type of network and of the provided
services. For example, in a packet-switching network, performance can be measured by throughput
(amount of correctly delivered bits per time unit), and by the distribution of data packet delays.
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nodes and of communication links of the real network. Let G = (C,L) be a directed graph,
where each node in the set C represents a network node with processing/queuing and
forwarding capabilities, and each oriented arc in L is a directional transmission system
(link). Each link has associated a cost measure defined by its physical properties and
crossing traffic flow. Network applications generate data flows from source to destination
nodes. For each node in the network, the local routing component uses the local routing
table to choose the best outgoing link to direct incoming data towards their destination
nodes. The routing table Ri = [rijd] of a generic node i, where Ni is the set of neighbors
of i, says to data packets entering node i and directed towards destination node d which
should be the next node j ∈ Ni to move to. Routing tables are bi-dimensional because
the choice of the neighbor node to which a data packet entering a generic node i should
be forwarded is a function of the packet destination node d. Ant-routing tables possess
the same bi-dimensional structure: pheromone trails associated to each connection are
vectors of NC − 1 values. In fact, ant-routing tables, in all the ACO implementations
for routing, are used to build the routing tables by means of implementation-dependent
transformations. These vectorial pheromone trails are the natural extension of the scalar
trails used for the TSP.

Other important differences with the TSP implementation arise from the different
nature of the two problems: (i) each ant is assigned a defined pair (s, d) of start-destination
nodes and, discovering a path between s and d, the ant builds only a part of the whole
problem solution, defined in terms of paths between all the pairs (i, j) in the network, (ii)
the costs associated to the connections are not statically assigned: they depend on the
connection’s physical properties and on the traffic crossing the connection, that interacts
recursively with the routing decisions.

In the following subsection we present S-AntNet, a simplified version of the AntNet
algorithm. A detailed description of AntNet can be found in [13], while a more performing
extension of it is described in [15].

2.5.2 S-AntNet

In S-AntNet, each ant searches for a minimum cost path between a pair of nodes of the
network. Ants are launched from each network node towards destination nodes randomly
selected to match the traffic patterns. Each ant has a source node s and a destination
node d, and moves from s to d hopping from one node to the next till node d is reached.
When ant k is in node i, it chooses the next node j to move to according to a probabilistic
decision rule which is a function of the ant’s memory Mk and of the local ant-routing
table Ai.

Pheromone trails are still connected to arcs, but are memorized in variables associated
to arc-destination pairs. That is, each directed arc (i, j) has NC−1 trail values τijd ∈ [0, 1]
associated, one for each possible destination node d an ant located in node i can have
(therefore, in general, τijd 6= τjid). Each arc has also associated an heuristic value ηij ∈ [0, 1]
independent of the final destination. The heuristic values are set to the following values:

ηij = 1− qij∑
l∈Ni qil

(2.7)

where qij is the length (in bits waiting to be sent) of the queue of the link connecting
node i with its neighbor j.
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In S-AntNet, as well as in most other implementations of ACO algorithms for routing
problems, the daemon component (line 6 of the ACO meta-heuristic of Figure 2.3) is not
present.

The local ant-routing table Ai is obtained by a functional composition of the local
pheromone trails τijd and heuristic values ηij. While building the path to the destination,
ants move using the same link queues as data. In this way ants experience the same
delays as data packets and the time Tsd elapsed while moving from the source node s
to the destination node d can be used as a measure of the path quality. The overall
“goodness” of a path can be evaluated by an heuristic function of the trip time Tsd and
of a local adaptive statistical model maintained in each node. In fact, paths need to
be evaluated relative to the network status because a trip time T judged of low quality
under low congestion conditions could be an excellent one under high traffic load. Once
the generic ant k has completed a path, it deposits on the visited nodes an amount of
pheromone ∆τ k(t) proportional to the goodness of the path it built. To this purpose,
after reaching its destination node, the ant moves back to its source nodes along the same
path but backward and using high priority queues, to allow a fast propagation of the
collected information.

1 procedure new active ant(ant identifier)
2 k = ant identifier; i = get start node(); t = get end node(); sk(t) = sks ;
3 Mk(t) = i;
4 while (i 6= t)

5 foreach j ∈ N k
i do read(aij);

6 foreach j ∈ N k
i do [P ]ij = pij =

aij∑
l∈N ki ail

;

7 next node = apply probabilistic rule(P ,N k
i ) ;

8 i = next node; sk(t) = 〈sk(t), i〉 ;
9 −

10 −
11 Mk(t) = i;
12 end while
13 foreach lij ∈ ψk(t) do
14 τij(t)← τij(t) + ∆τ k(t) ;

15 aij(t)←
wτij(t) + (1− w)ηij
w + (1− w)(N k

i − 1)
;

16 end foreach
17 free all allocated resources();
18 end procedure

Figure 2.5: Pseudo-code of S-AntNet’s new active ant() procedure. Line numbers are
put in one-to-one correspondence with those of the ACO meta-heuristic pseudo-code of Fig-
ure 2.3. Instruction at lines 9 and 10 are empty because no online step-by-step pheromone
update is performed. The update of pheromone trails and of ant-routing tables is done by
the ant during its backward path toward the origin node (lines 13→ 16). Pheromone evap-
oration is performed between between lines 14 and 15 by the pheromone evaporation()

procedure of Figure 2.3, which is activated by an appropriate synchronization mechanism
(not shown in the pseudo-code).

During this backward path from d to s the ant k increases the pheromone trail value
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τijd(t) of each connection lij previously used while it was moving from s to d. The
pheromone trail intensity is increased by applying the following rule:

τijd(t)← τijd(t) + ∆τ k(t) (2.8)

The reason the ant updates the pheromone trails during its backward trip is that,
before it can compute the amount of pheromone ∆τ k(t) to deposit on the visited arcs it
needs to complete a path from source to destination to evaluate it.

After the pheromone trail on the visited arc has been updated, the pheromone value of
all the outgoing connections of the same node i, relative to the destination d, evaporates:14

τijd(t)←
τijd(t)

(1 + ∆τ k(t))
, ∀j ∈ Ni (2.9)

where Ni is the set of neighbors of node i.

As we said, S-AntNet’s ant-routing table Ai = [aijd(t)] of node i is obtained, as usual,
by the composition of the pheromone trail values with the local heuristic values. This is
done as follows:

aijd(t) =
wτijd(t) + (1− w)ηij
w + (1− w)(|Ni| − 1)

(2.10)

where j ∈ Ni, d is the destination node, w ∈ [0, 1] is a weighting factor and the
denominator is a normalization term.

The ants decision rule is then defined as follows. Let, at time t, ant k be located on
node i and be directed towards node d. If Ni 6⊆ Mk, that is, if there is at least one city
in the ant’s current location neighborhood15 that ant k has not visited yet, then the ant
chooses the next node j ∈ Ni with probability

pkijd(t) =

{
aijd(t) if j /∈Mk

0 if j ∈Mk (2.11)

otherwise, the ant chooses a city j ∈ Ni with uniform probability: pkijd(t) = 1/(|Ni|).
In other words, ants try to avoid cycles (Equation 2.11) but, in the case all the nodes

in i’s neighborhood have already been visited by the ant, the ant has no choice and it has
to re-visit a node, generating in this way a cycle. In this case the generated cycle is deleted
from the ant memory, that forgets completely about it. Considering the stochasticity of
the decision rule and the evolution in the traffic conditions, it is very unlikely that the ant
repeats the same cycle over and over again.

2.6 Parallel implementations

The population-oriented nature of ACO algorithms makes them particularly suitable to
parallel implementation. In particular, it is at least in principle possible to exploit
three different types of parallelism: (i) parallelism at the level of ants, (ii) parallelism

14In this case the decay factor is chosen so that it operates a normalization of the pheromone values
which continue therefore to be usable as probabilities.

15In S-AntNet, differently from what happens in Ant System, the neighborhood and the feasible neigh-
borhood are the same (i.e., N k

i ≡ Ni).
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at the level of data, and (iii) functional parallelism. Parallelism at the level of ants,
which is probably the most obvious way of parallelizing an ACO algorithm, consists
in considering a number NC of colonies, NC > 1, each applied to the same problem
instance. Colonies can be allowed or not to exchange information on the search pro-
cess. Parallelism at the level of data consists in splitting the considered problem in
a number of subproblems in the data domain, each one solved by a colony of ants.
Last, functional parallelism could be easily obtained by letting the three procedures
ants generations and activity(), pheromone evaporation(), and daemon actions()

(lines 4-6 of the ACO meta-heuristic() procedure of Figure 2.3) perform their activities
concurrently, maybe exchanging synchronization signals. Obviously, functional parallelism
can be combined with the other two types of parallelism. Currently, all the parallel im-
plementations of ACO algorithms use ant level parallelism. These implementations are
briefly reviewed in the following.

• The first parallel versions of an ACO algorithm was Bolondi and Bondanza’s imple-
mentation of AS for the TSP on the Connection Machine CM-2 [34]. The approach
taken was that of attributing a single processing unit to each ant [2]. Unfortunately,
experimental results showed that communication overhead can be a major problem
with this approach on fine grained parallel machines, since ants spend most of their
time communicating to other ants the modifications they did to pheromone trails.
As a result, the algorithm’s performance was not impressive and scaled up very badly
when increasing the problem dimensions.

• Better results were obtained on a coarse grained parallel network of 16 transputers
[2, 17]. In this implementation, Bolondi and Bondanza divided the colony in NC
subcolonies, where NC was set to be the same as the number of available processors.
Each subcolony acted as a complete colony and implemented therefore a standard
AS algorithm. Once each subcolony completed an iteration of the algorithm, a
hierarchical broadcast communication process collected the information about the
tours of all the ants in all the subcolonies and then broadcast this information to all
the NC processors. In this way, a concurrent update of the pheromone trails was
performed. The speed-up obtained with this approach was nearly linear with the
number of processors and this behavior was shown to be rather stable for increasing
problem dimensions.

• More recently, Bullnheimer, Kotsis and Strauss [8] proposed two coarse grained par-
allel versions of AS called Synchronous Parallel Implementation (SPI) and Partially
Asynchronous Parallel Implementation (PAPI). SPI is basically the same as the one
implemented on transputers by Bolondi and Bondanza, while in PAPI pheromone
information is exchanged among subcolonies every fixed number of iterations done
by each subcolony. The two algorithms have been evaluated by simulation. The find-
ings show that PAPI performs better than SPI, where performance was measured
by running time and speedup. This is probably due to PAPI’s reduced communi-
cation caused by the less frequent exchange of pheromone trail information among
subcolonies. More experimentation will be necessary to compare the quality of the
results produced by the SPI and the PAPI implementations.

• An interesting aspect of any ant level parallel implementation is the type of pheromone
trail information that should be exchanged between the NC subcolonies and how
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this information should be used to update the subcolony’s trail information. Krüger,
Merkle and Middendorf [36] considered: (i) the exchange of the global best solution:
every subcolony uses the global best solution to choose where to add pheromone
trail; (ii) the exchange of the local best solutions: every subcolony receives the local
best solution from all other subcolonies and uses it to update pheromone trails; and
(iii) the exchange of the total trail information: every colony computes the average
over the trail information of all colonies (i.e., if τ r = [τ rij] is the trail information of
subcolony r, 1 ≤ r ≤ NC, then every colony r sends τ r to the other colonies and
afterwards computes τ rij =

∑NC
h=1 τ

h
ij , 1 ≤, i, j ≤ n). Preliminary results indicate that

methods (i) and (ii) are faster and give better solutions than method (iii).

• The execution of parallel independent runs is the easiest way to obtain a parallel
algorithm and, obviously, it is a reasonable approach when the underlying algorithm,
as it is the case with ACO algorithms, is randomized. Stützle [47] presents computa-
tional results for the execution of parallel independent runs on up to ten processors
of hisMMAS algorithm [48, 49]. His results show that the performance ofMMAS
improves with the number of processors.

2.7 Ants, pheromones, and solutions evaluation

In this section we discuss some of the most characterizing aspects of ACO algorithms.
In particular, we focus on the way solutions generated by ants are evaluated, the way
these evaluations are used to direct, via pheromone trail laying, ants’ search, and on the
importance of using a colony of ants.

Implicit and explicit solution evaluation. In ACO algorithms solutions generated by
ants provide feedback to direct the search of future ants entering the system. This
is done by two mechanisms. The first one, which is common to all ACO algorithms,
consists of an explicit solution evaluation. In this case some measure of the quality of
the solution generated is used to decide how much pheromone should be deposited
by ants. The second one is a kind of implicit solution evaluation. In this case,
ants exploit the differential path length (DPL) effect of real ants foraging behavior.
That is, the fact that if an ant chooses a shorter path then it is the first to deposit
pheromone and to bias the search of forthcoming ants.

It turns out that in geographically distributed problems, like network problems,
implicit solution evaluation based on the DPL effect can play an important role. In
fact, as it was shown, for example, in [12, 13] where explicit solution evaluation was
switched off by setting the amount of pheromone deposited by ants to a constant
value independent of the cost of the path built by the ant, it is possible to find
good solutions to network problems just exploiting the DPL effect. Quite obviously,
it has also been shown that coupling explicit and implicit solution evaluation (by
making the amount of pheromone deposited proportional to the cost of the solution
generated) improves performance.

The fact that the DPL effect can be exploited only in geographically distributed
network problems is due to efficiency reasons. In fact, the distributed nature of
nodes in routing problems allows the exploitation of the DPL effect in a very natural
way, without incurring in any additional computational costs. This is due both to
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the decentralized nature of the system and to the inherently asynchronous nature of
the dynamics of a real network.

On the contrary, this is not the case in combinatorial optimization problems where
the most natural way to implement ACO algorithms is by a colony of synchronized
ants, that is, ants that synchronously add elements to the solution they are build-
ing. Of course, it would in principle be possible to have asynchronous ants, in the
sense explained above, also in combinatorial optimization problems. The problem
is that the computational inefficiencies introduced by the computational overhead
necessary to have independent, asynchronous ants can outweigh the gains due to the
exploitation of the DPL effect (this was, for example, the case of the asynchronous
implementation of an ACO algorithm for the TSP reported in [11]).

Explicit solution evaluation and pheromone laying. As we said above, after an ant
has built a solution the cost of the built solution is used to compute the amount of
pheromone the ant should deposit on the visited edges. In Ant System, for example,
each ant deposits an amount of pheromone inversely proportional to the cost of the
solution it generated. Obviously, this is only one of the possible choices and many
implementations of ACO algorithms for the TSP or other combinatorial optimization
problems exist that use different functional forms of the solution cost to decide how
much pheromone the ants, or the daemon, should deposit. A problem which arises
in routing problems, and in general in any problem where the characteristics of the
problem change in unpredictable ways during problem solution, is that there is no
simple way to evaluate a solution and therefore to decide how much pheromone ants
should deposit. A way out to this problem, which is used by AntNet [12, 13], is to
use ants to learn online a model of the network status that can be used to evaluate
how good the solutions found by ants are.

Number of ants. The exact number of ants to be used is a parameter that, most of the
times, must be set experimentally. Fortunately, ACO algorithms seem to be rather
robust to the actual number of ants used. Here we will therefore limit our discussion
to the following question: Why to use a colony of ants (i.e., the setting of m > 1)
instead of using one single ant? In fact, although a single ant is capable of generating
a solution, efficiency considerations suggest that the use of a colony of ants can be
a desirable choice. This is particularly true for geographically distributed problems,
because the differential length effect exploited by ants in the solution of this class of
problems can only arise in presence of a colony of ants. It is also interesting to note
that in routing problems ants solve N̂ < N2

C shortest path problems, and a colony
of ants should be used for each of these problems.

On the other hand, in the case of combinatorial optimization problems in which ants
move synchronously, the use of m ants that build θ solutions each (i.e., the ACO
algorithm is run for θ iterations) could be equivalent, at least in principle, to the
use of one ant that generates m · θ solutions. Nevertheless, experimental evidence
suggests that the algorithm’s performance is at its best when the number m of ants
is set to a value M > 1, where M is, in general, dependent on the class of problems
to which the algorithm is applied.
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2.8 Other ACO meta-heuristic applications

There are now available numerous successful implementations of the ACO meta-heuristic
(Figure 2.3) applied to a number of different combinatorial optimization problems (see
Table 2.1). The list is ordered by application problem and chronologically. The most
studied problems have been the traveling salesman, the quadratic assignment (QAP) and
routing in telecommunication networks. For all of these problems, ACO algorithms are
competitive with the best available heuristic approaches. In particular:

• For the particularly important class of quadratic assignment problems which model
real world problems, ACO algorithms are currently one of the most performing
heuristics available. The next chapter of this book presents an overview of the
available ACO algorithms for the QAP.

• Results obtained by the application of ACO algorithms to the TSP are very encour-
aging (see [51] for an overview of applications of ACO algorithms to the TSP): they
are often better than those obtained using other general purpouse heuristics like
evolutionary computation or simulated annealing. Also, when adding to ACO algo-
rithms rather unsophisticated local search procedures based on 3-opt [38], the quality
of the results obtained [20, 46, 50] is close to that obtainable by much more sophisti-
cated methods. More research will be necessary to assess whether ACO algorithms
can reach the performance of state-of-the-art algorithms like Iterated Lin-Kernighan
[35].

• An ACO algorithm called AntNet [13, 15] outperformed a number of state-of-the-art
routing algorithms for packet-switching networks on a set of benchmark problems.

Very interesting results have been obtained also for:

• The sequential ordering problem, that is, the problem of finding the shortest Hamil-
tonian path on a graph which satisfies a set of precedence constraints on the order in
which cities are visited. When applied to this problem HAS-SOP, an ACO algorithm
coupled to a local search routine, has improved many of the best known results on
a wide set of benchmark problems [25].

• The shortest common supersequence problem and the vehicle routing problem. These
two problems, as well as the ACO algorithms proposed for their solution, are the
subject of the two concluding chapters of this book section dedicated to ACO algo-
rithms.

Last, ACO algorithms have also been applied to the graph coloring problem, for which
reasonably good, although not state-of-the-art results were obtained.

2.9 A short overview of the applications presented in

the following chapters of this book section

This section of the book includes three further chapters dedicated to applications of ACO
algorithms to some important and difficult combinatorial optimization problems: the
quadratic assignment problem, the vehicle routing problem, and the shortest common
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Table 2.1. List of current applications of ACO algorithms. Classification by application and chronologically ordered.

Problem name Authors Year Main references Algorithm name

Traveling salesman Dorigo, Maniezzo & Colorni 1991 [16, 21, 22] AS
Gambardella & Dorigo 1995 [23] Ant-Q
Dorigo & Gambardella 1996 [19, 20, 24] ACS & ACS-3-opt
Stützle & Hoos 1997 [48, 49] MMAS
Bullnheimer, Hartl & Strauss 1997 [6] ASrank

Quadratic assignment Maniezzo, Colorni & Dorigo 1994 [41] AS-QAP
Gambardella, Taillard & Dorigo 1997 [27] HAS-QAPa

Stützle & Hoos 1998 [50] MMAS-QAP
Maniezzo & Colorni 1998 [40] AS-QAPb

Maniezzo 1998 [39] ANTS-QAP

Vehicle routing Bullnheimer, Hartl & Strauss 1996 [9, 5, 7] AS-VRP
Gambardella, Taillard & Agazzi 1999 [26] HAS-VRP

Connection-oriented Schoonderwoerd, Holland, 1996 [45, 44] ABC
network routing Bruten & Rothkrantz

White, Pagurek & Oppacher 1998 [55] ASGA
Di Caro & Dorigo 1998 [14] AntNet-FS
Bonabeau, Henaux, Guérin, 1998 [4] ABC-smart ants

Snyers, Kuntz & Théraulaz

Connection-less Di Caro & Dorigo 1997 [12, 13, 15] AntNet & AntNet-FA
network routing Subramanian, Druschel & Chen 1997 [52] Regular ants

Heusse, Guérin, Snyers & Kuntz 1998 [33] CAF
van der Put & Rothkrantz 1998 [53, 54] ABC-backward

Sequential ordering Gambardella & Dorigo 1997 [25] HAS-SOP

Graph coloring Costa & Hertz 1997 [10] ANTCOL

Shortest common Michel & Middendorf 1998 [42] AS-SCS
supersequence

a HAS-QAP is an ant algorithm which does not follow all the aspects of the ACO meta-heuristic.
b This is a variant of the original AS-QAP.

supersequence problem. Although these problems are introduced and discussed in detail
in the forthcoming chapters, it is interesting here to show how they can be cast in the
ACO meta-heuristic framework.

2.9.1 The quadratic assignment problem

The quadratic assignment problem can be stated as follows. Consider a set of n activities
that have to be assigned to n locations. A matrix D = [dij] gives distances between
locations, where dij is the distance between location i and location j, and a matrix F =
[fhk] characterizes flows among activities (transfers of data, material, humans, etc.), where
fhk is the flow between activity h and activity k. An assignment is a permutation π of
{1, . . . , n}, where π(i) is the activity that is assigned to location i. The problem is to find
a permutation πm such that the product of the flows among activities by the distances
between their locations be minimized. Here it is interesting to note that the TSP can
be seen a particular case of the QAP: the items are the set of integers between 1 and n,
while the locations are the cities to be visited. The TSP is then the problem of assigning
a different integer number to each city in such a way that the tour which visits the cities
ordered according to their assigned number has minimal length.

In the ACO algorithms presented in Chapter 3 of this book the QAP is represented as
follows. The set C of the components is composed of the activities and of the locations.
Transitions are from activities to locations and from locations to activities. Typically,
an ant starts building a solution by first choosing an activity, then a location to which
to assign the activity, then another activity, and so on, until all activities have been
assigned. Activities, as well as locations, are chosen within the feasible neighborhood,
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that is, within the set of activities (locations) not yet assigned. Typically, in AS-QAP and
MMAS-QAP for example, pheromone trails are associated to transitions from activities
to locations (that is, to the choice of the location to which to assign an activity), but
not to transitions from locations to activities (which are chosen by some probabilistic or
heuristic rule that is not a function of pheromone trails). Obviously, nothing prevents
from defining an ACO algorithm in which also transitions from locations to activities are
a function of pheromone trails.

2.9.2 The shortest common supersequence problem

Given a set L of strings over an alphabet Σ, the shortest common supersequence problem
consists in finding a string of minimal length that is a supersequence of each string in L. A
string B is a supersequence of a string A if B can be obtained from A by inserting in A zero
or more characters. Consider for example the set L = bbbaaa, bbaaab, cbaab, cbaaa. The
string cbbbaaab is a shortest supersequence. Ants build solutions by repeatedly removing
symbols from the front of the strings in L and appending them to the supersequence under
construction. In practice, each ant maintains a vector of pointers to the front of the strings
(where the front of a string is the first character in the string not yet removed) and moves
in the space of the feasible vectors. Here the representation used by the ACO algorithm
is the following. The components are the vectors of pointers, the transitions are implicitly
defined by the rules which govern the way in which characters can be removed from the
string fronts, and the constraints are implicitly defined by the ordering of the characters
in the strings.

2.9.3 The vehicle routing problem

Vehicle routing problems (VRPs) are a class of problems in which a set of vehicles has to
serve a set of customers minimizing a cost function and subject to a number of constraints.
The characteristics of the vehicles and of the constraints determines the particular type of
VRP. The VRP considered in Chapter 5 is called vehicle routing problem with time win-
dows (VRPTW): Let G = (N,A) be a complete directed graph, where N = {n0, . . . , nn}
is the set of nodes, and A = (i, j) : i 6= j is the set of arcs. Node n0 represents a depot,
while the other nodes represent customers locations. A weight tij ≥ 0, representing the
travel time from node ni to node nj, is associated to each arc (i, j). A demand qi ≥ 0
(q0 = 0) and a service window [bi, ei], with ei ≥ bi ≥ 0, are associated to each customer ni.
The objective is to find minimum cost vehicle routes such that (i) every customer is visited
exactly once by exactly one vehicle, (ii) every customer is visited during its time window,
(iii) for every vehicle the total demand does not exceed the vehicle capacity Q, and (iv)
every vehicle starts and ends its tour in the depot. The particular VRPTW considered in
Chapter 5 uses a hierarchical cost function: the first goal is to minimize the number of
vehicles used, while the second goal is to minimize the total travel times. A solution with
a lower number of vehicles is always preferred to a solution with a higher number of tours
even if the travel time is higher. It is easy to see that VRPs and TSPs are closely related:
a VRP consists of the solution of many TSPs with common start and end city (that is, the
depot). As in the TSP, ants build their solutions by sequentially visiting all the cities: the
problem’s components are the cities, while the transitions can be associated to the arcs.
The feasible neighborhood is given by the set of unvisited cities and pheromone trails are
associated to arcs.
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1997.

[13] G. Di Caro and M. Dorigo. AntNet: Distributed stigmergetic control for commu-
nications networks. Journal of Artificial Intelligence Research (JAIR), 9:317–365,
December 1998.

[14] G. Di Caro and M. Dorigo. Extending AntNet for best-effort Quality-of-
Service routing. Unpublished presentation at ANTS’98 - From Ant Colonies
to Artificial Ants: First International Workshop on Ant Colony Optimization
http://iridia.ulb.ac.be/ants98/ants98.html, October 15-16 1998.

[15] G. Di Caro and M. Dorigo. Two ant colony algorithms for best-effort routing in
datagram networks. In Proceedings of the Tenth IASTED International Confer-
ence on Parallel and Distributed Computing and Systems (PDCS’98), pages 541–546.
IASTED/ACTA Press, 1998.

[16] M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian). PhD thesis,
Dipartimento di Elettronica, Politecnico di Milano, Italy, 1992.

[17] M. Dorigo. Parallel ant system: An experimental study. Unpublished manuscript,
1993.

[18] M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete opti-
mization. Technical Report IRIDIA/98-10, IRIDIA, Université Libre de Bruxelles,
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