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Abstract We study the general packing problem with M constraints. In [Jansen
and Zhang, TCS 2002] a c(1 + ε)-approximation algorithm for the gen-
eral packing problem was proposed. A block solver ABS(p, ε/6, c) with
price vector p, given accuracy ε and ratio c is required. In addition, in
[Villavicencio and Grigoriadis, Network Optimization (1997)] a (1 + ε)-
approximation algorithm for standard packing problem and its dual
problem was studied, with a block solver ABS(p, ε/10) (i.e., c = 1). In
this paper we develop c(1+ε)-approximation algorithms for the general
packing problem (or with its dual problem), with only weaker block
solvers ABS(p, O(ε′), c) with same structure as in previous algorithms,
where ε′ > ε. For both primal and dual problems we design an algo-
rithm with an ABS(p, ε1/10, c) and ε1 > ε. The bound on the number
of iterations is polynomial in M , ε and c. Furthermore we show an
algorithm for the primal problem with an ABS(p, ε3/6, c) and ε3 > ε.
And the bound on the number of iterations is polynomial in only M and
ε. In both cases running times are further improved with correspond-
ing weaker block solvers. This is the first attempt to solve the packing
problem with weaker block solvers.

1. Introduction

An interesting class of optimization problems is the packing problem

or convex min-max resource-sharing problem defined as follows:

(P ) λ∗ = min{λ|f(x) ≤ λe, x ∈ B},
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where f : B → IRM
+ is a vector of M continuous convex functions de-

fined on a nonempty convex set B ⊆ IRN , and e is the vector of all
ones. Without loss of generality we can assume λ∗ > 0. The functions
fm, 1 ≤ m ≤ M , are packing constraints. In addition, we denote by
λ(x) = max1≤m≤M fm(x) for any given x ∈ B. There are many ap-
plications of the packing problem. Typical examples include scheduling
on unrelated machines, job shop scheduling, network embeddings, Held-
Karp bound for TSP, minimum-cost multicommodity flows, maximum
concurrent flow, bin covering, spreading metrics, approximating metric
space, graph partitioning, multicast congestion in communication net-
works, and energy consumption problem in ad-hoc networks on general
metric spaces [1–4, 7, 9, 13, 17, 19, 22].

The problem (P ) could be solved exactly in polynomial time in its size
usually. However, in some cases an approximate solution is enough (e.g.
[16]). In addition, it is possible that the size of (P ) is exponential in the
size of input (e.g. [1, 15, 19]). Thus we consider fast but approximation
algorithms for problem (P ). Given an accuracy tolerance ε > 0, the
approximate problem is as follows:

(Pε) compute x ∈ B such that f(x) ≤ (1 + ε)λ∗e.

Grigoriadis et al. [5, 6] proposed algorithms for the above problem
based on the Lagrangian duality relation λ∗ = minx∈B maxp∈P pT f(x) =

maxp∈P minx∈B pT f(x), where P = {p ∈ IRM |∑M
m=1 pm = 1, pm ≥ 0}.

Denoting by Λ(p) = minx∈B pT f(x), it can be verified that a pair x ∈ B
and p ∈ P is optimal if and only if λ(x) = Λ(p). On the other hand, the
corresponding approximate dual problem is:

(Dε) compute p ∈ P such that Λ(p) ≥ (1 − ε)λ∗.

In addition, the Lagrangian or price-directive decomposition method is
applied in their algorithms, which is an iterative approach that solves
(Pε) and (Dε) by computing a sequence of pairs x and p to approx-
imate the exact solution from above and below, respectively. Grigo-
riadis and Khachiyan [6] proved that (Pε) and (Dε) can be solved in
O(M(lnM + ε−2 ln ε−1)) iterations or calls to a standard approximate
block solver ABS(p, t) that solves the block problem for a given tol-
erance t = O(ε): to compute x̂ = x̂(p) ∈ B such that pT f(x̂) ≤
(1 + t) miny∈B pT f(y). Villavicencio and Grigoriadis [18] proposed a
modified logarithmic potential function to avoid the ternary search and
the number of iterations is also O(M(lnM + ε−2 ln ε−1)). In [14] the
bound was improved to O(M(lnM + ε−2)) for both (Pε) and (Dε).

However, in general the block problem may be hard to approximate
[1–3, 15, 19], i.e., the assumption to have a block solver with accuracy
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t = O(ε) is too strict. Therefore in [14] the authors considered the
case that only a weak approximate block solver ABS(p, t, c) is available,
which is defined to compute x̂ = x̂(p) ∈ B such that pT f(x̂) ≤ c(1 +
t)miny∈B pT f(y), where c ≥ 1 is the approximation ratio. The main goal
is to solve the following primal problem (using the weak block solver):

(Pε,c) compute x ∈ B such that f(x) ≤ c(1 + ε)λ∗e.

And the corresponding dual problem is:

(Dε,c) compute p ∈ P such that Λ(p) ≥ 1

c
(1 − ε)λ∗.

Jansen et al. [14] developed an approximation algorithm that for any
accuracy ε ∈ (0, 1] solves the (Pε,c) in O(M(lnM + ε−2 ln ε−1)) itera-
tions by adding a new stopping rule. Each step calls the weak block
solver ABS(p, O(ε), c) once and has an overhead of O(M ln ln(Mε−1))
arithmetic operations. In addition, for small ratio c with ln c = O(ε)
they improved the bound to O(M(lnM + ε−2)).

Related results: Plotkin et al. [17] considered the linear feasibility
variants of both problems: either to find a point x ∈ B such that f(x) =
Ax ≥ (1 − ε)b or to find a point x ∈ B such that f(x) = Ax ≤ (1 + ε)b
where A is the coefficient matrix with M rows and b is an M -dimensional
vector. The problems are solved by Lagrangian decomposition with ex-
ponential potential reductions. The numbers of iterations in these al-
gorithms are O(ε−2ρ ln(Mε−1)) and O(M + ρ ln2 M + ε−2ρ ln(Mε−1))
respectively, where ρ = max1≤m≤M maxx∈B aT

mx/bm is the width of
B relative to Ax ≥ b. However, their algorithms could have only
pseudo polynomial running time due to the parameter ρ. Garg and
Könemann [4] proposed a (1 + ε)-approximation algorithm for the lin-
ear packing problem within O(Mε−2 lnM) iterations, which is inde-
pendent of the width. Unfortunately implementation results show that
their algorithm is very impractical [1]. Young [20] studied also the lin-
ear case of the packing problem but weak block solvers are allowed.
His algorithm uses O(ρ′(λ∗)−1ε−2 lnM) calls to the block solver, where
ρ′ = max1≤m≤M maxx∈B aT

mx/bm−min1≤m≤M minx∈B aT
mx/bm and λ∗ is

the optimal value of the packing problem. Similar to [17], this result also
depends on input data. Furthermore, Charikar et al. [2] noticed that the
result in [17] for the packing problem can be extended also to the case of
weak block solvers in the same number O(ε−2ρ ln(Mε−1)) of iterations.
For the covering problem, which is related to the packing problem, Grigo-
riadis et al [8] showed that the number of iterations is O(M(lnM +ε−2))
with c = 1. Jansen and Porkolab [12] studied the general covering prob-
lem with only weak approximate block solver and showed that at most
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O(M(lnM + ε−2 + ε−3 ln c)) coordination steps are necessary. Recently
Jansen [10] improved the bound to O(M(lnM + ε−2 ln ε−1)), which is
same as the bound in [14] for the packing problem. In addition, Young
[21] proposed an approximation algorithm for a mixed linear packing
and covering problem with the number of iterations O(Mdε−2 lnM),
where d is the maximum number of constraints any variable appears in.
Jansen [11] further improved the bound to O(Mε−2 ln(Mε−1)), which is
also the first result independent of data for the mixed problem.

Our contribution: We notice that in [18] a (1 + ε)-approximate so-
lution for (Pε) and (Dε) can be obtained with a (1 + ε/10)-approximate
block solver, while a c(1 + ε)-approximate solution for (Pε,c) with a
c(1 + ε/6)-approximate block solver as well. Thus it is an interesting
problem to solve (Pε,c) with either a c(1 + ε′/10)- or a c(1 + ε′/6)-
approximate block solver, where ε ≤ ε′ ≤ 1. In this paper we develop al-
gorithms for the above problems. First, we show a c(1+ε)-approximation
algorithm A for both (Pε,c) and (Dε,c), with only an ABS(p, ε1/10, c),
where ε1 = 8ε/(7 − ε) > 8ε/7 and the number of iteration is bounded
by O(Mc2(lnM + ε−4 ln c + ε−3 ln ε−1)). We then improve the coordi-
nation complexity to O(Mc2(lnM + ε−3 ln c + ε−2 ln ε−1)) in A′, but an
ABS(p, ε2/10, c) is required, where ε2 = 8ε/((7 + 8r) − (1 − 8r)ε) ≥
8ε/(7 + 8r) for a constant r ∈ (0, 1/8). Notice here ε2 ∈ (ε, ε1). Fur-
thermore, for only (Pε,c) we develop a c(1 + ε)-approximation algo-
rithm F with an ABS(p, ε3/6, c), with ε3 = (43−

√
1849 − 1176ε)/12 ≥

49ε/43. And the bound on the number of iterations is O(M(lnM +
ε−4 ln ε−1)), which is also improved to O(M(lnM + ε−2 ln ε−1)) in F ′

with an ABS(p, ε4/6, c) for an ε4 ∈ (ε, ε3). These algorithms are the first
ones to solve general packing problems with only weaker block solvers.

Applications: One application is the case that the block problem
only has an algorithm with a running time depending on input value
power to a function of ε−1, for instance, O(n1/ε). In this case, to solve
both problem (Pε,c) and (Dε,c), we just need a c(1+ ε′/10)-approximate
block solver, or a c(1 + ε′/6)-approximate block solver to solve only
(Pε,c). Thus the running time of ABS can be reduced and the overall
running time, which is the product of the bound on number of iterations
and the running time of ABS, can decrease considerably. Another very
interesting case is that the requirement of approximation ratio to block
solver is too strict, i.e., only a c′(1 + ε/10)- or c′(1 + ε/6)-approximate
block solver exists, where c′ > c. For this case, if c′ ≤ c(1 + ε′/10)/(1 +
ε/10) or c′ ≤ c(1 + ε′/6)/(1 + ε/6), respectively, we are able to also use
our algorithms to solve the instance.

The paper is organized as follows: In Section 2 the potential function,
price vector and their properties are reviewed. The algorithm A is pre-
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sented in Section 3, as well as algorithm F in Section 4. Improvements
of running times are also addressed. Due to the limit of space, proofs
are not given in this version.

2. Modified logarithmic potential function

We use potential function to relax the packing constraints and show
that an approximation of the minimum value of potential function cor-
responds to an approximation of λ∗. Thus the original problem can be
replaced by finding a good approximate minimum point of the (smooth)
potential function. The modified potential function is defined as follows
[14, 18]:

Φt(θ, x) = ln θ − t

M

M
∑

m=1

ln(θ − fm(x)), (1)

where θ ∈ IR+ and x ∈ B are variables, and t ∈ (0, 1] is a given tol-
erance parameter, which is also used in the approximate block solver
ABS(p, t, c). Same as [14, 18], in our algorithm, the values of t will
be from O(1) down to O(ε), where ε is the desired accuracy tolerance.
Since λ(x) < θ < ∞ where λ(x) = max{f1(x), . . . , fM (x)}, the function
Φt is well-defined. In addition, it has the barrier property: Φt(θ, x) → ∞
for θ → λ(x) and θ → ∞.

The reduced potential function is defined as the minimum of Φt(θ, x)
over θ ∈ (λ(x),∞) for a fixed x ∈ B, i.e.

φt(x) = min
λ(x)<θ<∞

Φt(θ, x). (2)

It can be proved that θ(x) is the solution to the following equation:

t

M

M
∑

m=1

θ

θ − fm(x)
= 1. (3)

The function g(θ) = (t/M)
∑M

m=1 θ/(θ−fm) is strictly decreasing in θ in
(λ(x),∞). Therefore the implicit function θ(x) is the unique root of (3)
in the interval (λ(x),∞). θ(x) and φt(x) are bounded by the following
lemmas, same as [14, 18].

Lemma 1 λ(x)/(1 − t/M) ≤ θ(x) ≤ λ(x)/(1 − t) for any x ∈ B.

Lemma 2 (1 − t) lnλ(x) ≤ φt(x) ≤ (1 − t) lnλ(x) + t ln(exp(1)/t) for

any x ∈ B.
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The price vector p(x) ∈ IRM is defined as follows [14, 18]:

pm(x) =
t

M

θ(x)

θ(x) − fm(x)
, m = 1, . . . , M. (4)

The following lemma holds:

Lemma 3 p(x) ∈ P and p(x)T f(x) = θ(x)(1 − t) for any x ∈ B.

3. Approximation algorithm A

In this section we will study the algorithm A, which solves both pri-
mal problem (Pε,c) and dual problem (Dε,c) with a weaker block solver
ABS(p, ε1/10, c), where ε1 = 8ε/(7− ε) > 8ε/7. Compared with that in
[18], the block solver employed here is weaker.

The algorithm works as follows. We apply the scaling phase strategy.
In each scaling phase an error tolerance σ is set. Based on the known
pair of x and p, a solution x̂ is delivered by the approximate block solver.
Afterwards an appropriate linear combination of the old solution x and
block solution x̂ is computed as the new iterate. The iteration stops
when the solution satisfies a stopping rule (defined later). After one
scaling phase, the error tolerance σ is halved and the next scaling phase
starts until the error tolerance σ ≤ ε. The pair x and p generated by
the last scaling phase solves both (Pε,c) and (Dε,c) (see Subsection 3.1).

The minimum dual value Λ(p) can be approximated by pT f(x̂), where
x̂ is the solution computed by the weak approximate block solver for the
current price vector p. Furthermore, to establish the stopping rule of
the scaling phase in algorithm A, the value of duality gap should be
estimated in each iteration. Thus we define the stopping rule as follows:

(1 + σ′/4)pT f(x) − pT f(x̂) ≤ σ′θ(x)/2, (5)

where σ′ = 8σ/(7 − σ) > 8σ/7. This stopping rule is similar to that
in [18] (which is only valid for a standard block solver), but with an
additive term in the left hand side and σ is replaced by σ′. Only in this
way can we obtain the desired solution with a weaker block solver. In
addition, the stopping rule (5) is also different from the first one in [14].
We set t = σ′/10 for the error tolerance in the block solver ABS(p, t, c).
To run the algorithm, we need an initial solution x0 ∈ B. Here we
use the solution of the block solver ABS(e/M, σ/10, c) as x0, where the
price vector e/M is the vector of all 1/M ’s and the initial error tolerance
σ = 1/2.

Algorithm A(f, B, ε, c):
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initialize: σ := 1/2, σ′ := 8σ/(7 − σ), t := σ′/10, p := e/M ;
x = x0 := ABS(p, t, c), finished scaling := false;
while not(finished scaling) do {scaling phase}

σ := σ/2, σ′ := 8σ/(7 − σ), t := σ′/10;
finished coordination := false;
while not(finished coordination) do {coordination step}

compute θ(x) from (3) and p = p(x) ∈ P from (4);
x̂ := ABS(p, t, c);
if (5) then

finished coordination := true;
else

x := (1 − τ)x + τ x̂ for an appropriate step length τ ∈ (0, 1];
end

end

if (σ ≤ ε) then finished scaling := true;
end

We set the step length τ as τ = (3tσ′)/(32Mc2) here.

3.1 Analysis of algorithm A

In this subsection we first show the correctness of algorithm A by
proving that if the algorithm stops, the delivered pair x and p is the so-
lution to (Pε,c) and (Dε,c). Afterwards, we will prove that the algorithm
stops in each scaling phase after a finite number of iterations. From now
on for convenience we denote θ = θ(x), θ′ = θ(x′), f = f(x), f ′ = f(x′)

and f̂ = f(x̂) in this section. First we have the following bound on the
initial solution x0 similar to that in [14].

Lemma 4 If x0 is the solution of ABS(e/M, 1/20, c), then λ(x0) ≤
(21/20)Mcλ∗.

Before proving the correctness of the algorithm A, the following tech-
nical lemma is needed to show that even though there is no guarantee
that the sequence of values λ(x) computed by algorithm A is decreasing,
λ(x) can increases only slightly in each coordination step:

Lemma 5 For any two consecutive iterates x and x′ ∈ B within a scaling

phase of algorithm A, λ(x′) ≤ θ(x) ≤ λ(x)/(1 − σ′/10).

Now we show that algorithm A is correct.

Theorem 6 If algorithm A stops, then for any ε ∈ (0, 1/2] the pair x
and p delivered solves (Pε,c) and (Dε,c) with an approximate block solver

ABS(p, ε1/10, c), where ε1 = 8ε/(7 − ε).
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The remaining task is to prove that the algorithm A will halt in finite
number of iterations. In order to do so, in the next lemma we show that
the reduced potential function φt decreases boundedly by a constant
factor (depending on parameters t, τ and σ) in each coordination step.
This helps us to prove an upper bound on the number of iterations.

Lemma 7 For any two consecutive iterates x, x′ ∈ B within a scaling

phase of algorithm A, φt(x
′) ≤ φt(x) − tτσ′/4.

Theorem 8 For a given accuracy tolerance ε ∈ (0, 1/2], the number of

coordination steps of algorithm A is bounded by Nε = O(Mc2(lnM +
ε−4 ln c + ε−3 ln ε−1)).

Similar to the special case of small c discussed in [14], from the The-
orem 6 we immediately have the following result:

Corollary 9 If c ≤ 1 + ε/8, algorithm A generates a pair x and p as

the solution to (Pε) and (Dε) with a weak block solver ABS(p, ε1/10, c)
within O(M(lnM + ε−3 ln ε−1)) iterations.

Remark: It is worth noting that to compute price vector (4), equa-
tion (3) should be solved to obtain θ(x), while it only can be solved
approximately by numerical methods. The way to avoid the influence of
numerical error is discussed in [8, 14, 18]. And the numerical overhead
in each coordination step can be bounded by O(M ln ln(Mε−1)) with
the Newton’s method.

3.2 Better running time

In [14] it is mentioned that both (Pε,c) and (Dε,c) can be solved in
O(Mc2(lnM + ε−3 ln c+ ε−3 ln ε−1)) iterations with an ABS(p, ε/10, c).
However, by Theorem 6 we are only able to show that the bound is
O(Mc2(lnM + ε−4 ln c + ε−3 ln ε−1)) for algorithm A to solve (Pε,c) and
(Dε,c) with ABS(p, ε1/10, c). In this way we are going to develop another
algorithm A′ to obtain a better running time with a new block solver
ABS(p, ε2/10, t), where ε2 = 8ε/((7 + 8r)− (1− 8r)ε) ≥ 8ε/(7 + 8r) for
a constant r ∈ (0, 1/8). Notice here ε2 ∈ (ε, ε1).

The stopping rule of A′ is as follows:

(1 + (1/4 − 2r)σ′)pT f(x) − pT f(x̂) ≤ σ′θ(x)/2, (6)

where σ′ = 8σ/((7 + 8r) − (1 − 8r)σ). And other parts of algorithm A′

are same as A. Lemma 4 and 5 are still valid in this case. Then the
following theorem holds:
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Theorem 10 If algorithm A′ stops, then for any ε ∈ (0, 1/2] the pair x
and p delivered solves (Pε,c) and (Dε,c) with an approximate block solver

ABS(p, ε2/10, c).

As for the running time, we have the following lemma for the bound
on increase of reduced potential function similar to Lemma 7:

Lemma 11 For any two consecutive iterates x, x′ ∈ B within a scaling

phase of algorithm A′, φt(x
′) ≤ φt(x) − rτσ′.

In this way we can follow the proof of Theorem 8 to obtain the number
of iterations of algorithm A′. Since here r is a constant in (0, 1/8), we
have the following bound:

Theorem 12 For a given accuracy tolerance ε ∈ (0, 1/2], the number

of coordination steps of algorithm A′ is bounded by Nε = O(Mc2(lnM +
ε−3 ln c + ε−2 ln ε−1)).

This bound is exactly the same as mentioned in [14]. But here we still
get some improvement of the approximation ratio though it is not as
good as algorithm A.

4. Fast approximation algorithm F for (Pε,c)

In this section, based on the algorithm in [14], we will propose a fast
approximation algorithm F only for (Pε,c) with ABS(p, ε3/6, c), where
ε3 = (43 −

√
1849 − 1176ε)/12 ≥ 49ε/43.

The algorithm works similarly to A. The scaling phase strategy is em-
ployed, and in each scaling phase a relative error tolerance σs is set. We
have two stopping rules here and the iterative procedure in one scaling
phase stops if any one of them is fulfilled. Then the error tolerance σs is
halved and the new scaling phase starts in the same way as in algorithm
A, until the error tolerance σs ≤ ε. The solution xs delivered in the last
scaling phase solves (Pε,c) (see also Subsection 4.1).

We also estimate the duality gap to construct the stop rule. For our
first stopping rule a parameter ν is defined as follows (same as [14, 18]):

ν = ν(x, x̂) =
pT f(x) − pT f(x̂)

pT f(x) + pT f(x̂)
. (7)

If ν = O(ε), then the duality gap is small. However, in the case that ν
is large and close to 1, the gap may be extremely large [14]. To obtain a
better bound on the number of iterations, we define another parameter
to connect the function value with the solution of previous scaling phase.
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Let σs be the relative error tolerance of the s-th scaling phase. Then
similar to [14], the parameter ws is defined as follows:

ws =

{

1+σ1

(1+σ0/6)M , for the first scaling phase;
1+σs

1+2σs

, otherwise.
(8)

Let xs be the solution of s-th scaling phase. Then the two stopping rules
used in the s-th scaling phase are:

Rule 1 : ν ≤ σ′2
s /36;

Rule 2 : λ(x) ≤ ws λ(xs−1),
(9)

where σ′ = kεσ and the parameter kε = (55 +
√

1849 − 1176ε)/98 < 1.
The stopping rules here are similar to those in [14]. But the latter are
only for the case of an ABS(p, ε/6, c).

We set t = σ′
s/6 for the error tolerance in the block solver ABS(p, t, c)

in algorithm F . We use the solution of the block solver ABS(e/M, 1/6, c)
as initial solution x0, where the price vector e/M is still the vector of all
1/M ’s and the initial error tolerance σ0 = 1.

Algorithm F(f, B, ε, c):
initialize: s := 0, σ1 = σ0 := 1, σ′

1 = σ′
0 := kεσ0, t := σ′

0/6, p := e/M ;
x0 := ABS(p, t, c) and finished scaling := false;
while not(finished scaling) do {scaling phase}

s := s + 1, x := xs−1 and finished coordination := false;
compute ws from (8);
while not(finished coordination) do {coordination step}

compute θ(x) from (3) and p = p(x) ∈ P from (4);
x̂ := ABS(p, t, c);
compute ν = ν(x, x̂) from (7);
if (Stopping Rule 1 or 2) then

xs := x and finished coordination := true;
else

x := (1 − τ)x + τ x̂ for an appropriate step length τ ∈ (0, 1];
end

end

σs+1 := σs/2, σ′
s+1 := kεσs+1 and t := σ′

s+1/6;
if (σs+1 ≤ ε/2) then finished scaling := true;

end

The step length is set as τ = tθ(x)ν/(2M(p(x)T f(x) + p(x)T f(x̂))),
similar to [14, 18].
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4.1 Analysis of the algorithm F

We are going to analyze the algorithm F is this section. We will show
the correctness, i.e., to prove that the solution xs of the last scaling
phase is a solution to (Pε,c). Then we will prove that the bound on the
number of iterations such that the algorithm stops is polynomial only
in M and ε. From now on we denote θ = θ(x), θ′ = θ(x′), f = f(x),

f ′ = f(x′) and f̂ = f(x̂). First we can obtain the following bound on
the function value of the initial solution x0, similar to that in [14, 18].

Lemma 13 If x0 is the solution of ABS(e/M, t, c) with t = 1/6, then

λ(x0) ≤ (7/6)cMλ∗.

We can prove the following theorem by showing that at the end of the
s-th scaling phase the solution satisfies λ(x) ≤ c(1 + σs)λ

∗:

Theorem 14 If algorithm F stops, then for any ε ∈ (0, 1] the computed

solution x ∈ B fulfils (Pε,c) with ABS(p, ε3/6, c), where ε3 = (43 −√
1849 − 1176ε)/12.

Then we are to find the bound on the number of iterations of the
algorithm F . In the next lemma we show that the decrease of the reduced
potential function φt in each iteration is lower-bounded by a parameter
depending only on t, ν and M , similar to Lemma 7. This helps us to
prove an upper bound on the number of iterations.

Lemma 15 For any two consecutive iterates x, x′ ∈ B within a scaling

phase of algorithm F , φt(x
′) ≤ φt(x) − tν2/(4M).

From the above bound we are able to obtain the bound on the number
of iterations of algorithm F .

Theorem 16 For a given relative accuracy tolerance ε ∈ (0, 1], algo-

rithm F delivers a solution x satisfying λ(x) ≤ c(1 + ε)λ∗ with a weak

block solver ABS(p, ε3/6, c) in N = O(M(lnM + ε−4 ln ε−1)) coordina-

tion steps.

Remark: The running time here is worse than that in [14]. However,
a block solver ABS(p, ε/6, c) is required in [14] while here we only need
a ABS(p, ε3/6, c). In addition, different from Theorem 8, we have got
the first algorithm with the iteration complexity independent of c in the
case of weaker block solvers.

Similar to the special case of small c (ln c = O(ε)) discussed in [14],
we here can also design a faster algorithm F̄ with only the first stopping
rule. It can be proved that F̄ can solve both primal and dual problems
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with a better bound on the number of iterations. Therefore we have the
following result:

Corollary 17 If c ≤ 1/kε, the algorithm F̄ can generate a pair x and

p solving both (Pε) and (Dε) with only the weak approximate block solver

ABS(p, ε3/6, c) within O(M(lnM + ε−4)) iterations.

4.2 Better running time

The number of iterations of the algorithm for primal problem in [14]
is bounded by O(M(lnM + ε−2 ln ε)), which is better than the bound
in Theorem 16. In addition, in Subsection 3.2 it has been showed that
a better bound on running time can be achieved with a different weak
block solver. Here we also get such an algorithm with this technique.

Similar to the cases in Subsection 3.2, we can develop an algorithm
F ′ by slight modification of the stopping rules. Suppose r ∈ (0, 1) is a
constant. And here a function h(r) is defined as:

h(r) =







2r(1−r)
3(1+r)2

, if r ≥ 3
4 ;

6(1−r)
7(6−r) , otherwise.

(10)

And ε4 = ((1 − h(r)) −
√

(1 − h(r))2 − 4h(r)ε)/(2h(r)) > ε/(1 − h(r)),
and kr,ε = 1− h(r)ε4. Define σ′

s = kr,εσs. Then the stopping rules of F ′

are as follows:

Rule 1 : ν ≤ rσ′
s/6;

Rule 2 : λ(x) ≤ ws λ(xs−1),
(11)

Lemma 13 is still valid for algorithm F ′. Similar to that for F , we have
the following theorem:

Theorem 18 If algorithm F ′ stops, then for any ε ∈ (0, 1] the solution

x delivered satisfies (Pε,c) with ABS(p, ε4/6, c).

As for the running time, we have also the same bound on increase of
reduced potential function for F ′ as in Lemma 15. To find the bound
on number of iterations of algorithm F ′, we can just apply the similar
argument to the proof of Theorem 16. Since here r is a constant in (0, 1),
we have the following theorem:

Theorem 19 For a given relative accuracy ε ∈ (0, 1], the number of

coordination steps of algorithm F ′ is bounded by N = O(M(lnM +
ε−2 ln ε−1)).
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This bound exactly matches the bound in [14]. But here we just need
a weaker block solver.

Remark: We find that if we design the first stopping rule as ν ≤ v
for any v < t, we can always have a ε′ > ε for ABS(p, ε′/6, c) called
in algorithm. A reasonable choice, v = tq for large q, can generate a
large ε′. Unfortunately this kind of improvement is very limited and
the running time increases considerable for the bound on the number of
iterations is O(M(lnM + ε−2q ln ε−1)).

5. Conclusion and open problem

In this paper we have presented the first c(1 + ε)-approximation al-
gorithms for the general packing problem (or with its dual problem),
with only weaker block solvers. The number of iterations is bounded by
polynomials in M , ε and c or even only in M and ε. We also reduced
the bounds to the same as in [14].

An interesting problem is whether one can find c′(1+ε)-approximation
algorithms for general packing problem with only an approximate block
solver ABS(p, O(ε), c), where c′ < c. By the gap between pT f(x) and
pT f(x̂) we conjecture that it is possible and the lower bound on c′ is
(c + 1)/2.
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