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Abstract We analyze an algebraic representation of AES–128 as an embedding in
BES, due to Murphy and Robshaw. We present two systems of equa-
tions S? and K? concerning encryption and key generation processes.
After some simple but rather cumbersome substitutions, we should ob-
tain two new systems C1 and C2. C1 has 16 very dense equations of
degree up to 255 in each of its 16 variables. With a single pair (p, c),
with p a cleartext and c its encryption, its roots give all possible keys
that should encrypt p to c. C2 may be defined using 11 or more pairs
(p, c), and has 16 times as many equations in 176 variables. K? and
most of S? is invariant for all key choices.

Keywords: Advanced Encryption Standard, AES, BES, DES, Cryptography, Gröbner
bases, Computer Algebra

Introduction
Rijndael is a block cipher, that encrypts blocks of 128, 192, and 256

bits using symmetric keys of 128, 192, and 256 bits. It was designed
with a particular attention to bit-level attacks, such as linear and dif-
ferential cryptanalysis. Its resistance to such attacks is the dichotomy
between operations in F = GF (28) and GF (2). Since its proposal, many
new bit-level attacks, such as impossible differential and truncated dif-
ferential have been proposed. Most of them break with some efficiency
reduced versions of Rijndael, but they are not much better than exhaus-
tive key search in the general case. In practice they are mainly academic
arguments rather than real world threats to the security of AES. The
interested reader can find an account and some references about these
cryptological tools in [ODR].
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Another, new, cryptological tool is the algebraic representation of the
cipher [MR; FSW; CP]. In this case, an eavesdropper tries to write the
whole set of operations and parameters of the cipher as a system of
polynomial equations, which he/she next tries to solve. In general, the
systems are enormous. Solving them using general purpose techniques,
such as Gröbner bases [CLO] is considered the wrong way to face the
problem. However, the systems have sometimes an intrinsic structure,
and the task may get easier. Not too much research is done in the topic:
in particular, AES seems to have been designed without considering
algebraic cryptanalysis tools.

In this paper we focus on the BES algebraic approach, due to Murphy
and Robshaw [MR]. We present some algebraic aspects of representing
AES as a system of polynomial equations following the BES approach.
By means of successive substitutions, we are able to eliminate all in-
termediate variables, obtaining two systems S? and K? whose solution
corresponds to code breaking. Actually, they are very complicated: their
resolution is not trivial at all.

1. The AES-128 cipher
The AES encryption algorithm is sketched below:

Input a cleartext x.

– Initialize State = x.
– perform an operation AddRoundKey, in which Round-

Key is xor-ed with the State.

For nine (first to ninth) rounds:

– perform a substitution operation called SubBytes on State,
using an S-box.

– perform a permutation ShiftRows on State.
– perform an operation MixColumns on State.
– perform AddRoundKey.

The tenth (last) round:

– perform SubBytes.
– perform ShiftRows.
– perform AddRoundKey.

Define the ciphertext y to be the State.

All AES operations are byte-oriented. The cleartext, ciphertext, and
each output of intermediate steps of encryption and decryption algo-
rithms are thought of as 4×4 matrices of bytes. The operations on each
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s00 s01 s02 s03

s10 s11 s12 s13

s20 s21 s22 s23

s30 s31 s32 s33

=⇒
s00 s01 s02 s03

s11 s12 s13 s10

s22 s23 s20 s21

s33 s30 s31 s32

Figure 1. The ShiftRows operation on AES

byte are those of the finite field F = GF (28). The elements are thought
of as polynomials with coefficients in GF (2), mod (m(t)), the so-called
Rijndael polynomial :

m(t) = t8 + t4 + t3 + t + 1 = 11b . (1)

They are represented as integers pairs in hexadecimal representation.
If interpreted as eight–bit binary strings, we have the t−term exponents.

The SubBytes operation substitutes each of the bytes x with S(x):

S(x) = 63 + 8fx127 + b5x191 + 01x223 + f4x239 +
25x247 + f9x251 + 09x253 + 05x254

Actually, S(x) is a permutation polynomial.
The ShiftRows operation permutes bytes in each row, see Figure 1.

The MixColumns operation performs a permutation of bytes in each
column using a matrix in GL(F, 4), introduced later in Section 2.1. In
practice, the columns are considered as polynomials in F[x], and multi-
plied mod (x4 + 1) by the polynomial a(x) :

a(x) = 03x3 + 01x2 + 01x + 02. (2)

Now consider the key schedule. The key used in every cipher round
is successively obtained by the key of the precedent one. Here is the
complete procedure.

Input a key h0. Initialize H0 = h0.

For each round r = 1, . . . , 10, permute (RotWord) the sub-vector
formed by the last four elements (word) of Hr−1, see Figure 2.

Perform the SubWord (S-box on each byte) operation on the ob-
tained result, and add the vector Rconr = (tr−1, 0, 0, 0).

Define the other elements by means of bitwise xor operations in
terms of the obtained result and other words from Hr−1.

Define the set of keys to be h to be {Hr | r = 0, . . . , 10}.
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a0 a1 a2 a3 =⇒ a1 a2 a3 a0

Figure 2. The RotWord operation on AES

Consider each vector as a four-words set, indicated with a second
index ranging from 0 to 3 indicating single parts. For y ∈ F4 we put
ϕr

A(y) = SubWord(RotWord‘(y)) + Rconr. The rth round for AES
key generation scheme is:

KA =


Hr0 = ϕr

A(Hr−1,3)
Hr1 = Hr0 + Hr−1,1

Hr2 = Hr1 + Hr−1,2

Hr3 = Hr2 + Hr−1,3

=⇒ Hr = (Hr0,Hr1,Hr2,Hr3) (3)

2. The BES cipher
We start from the BES cipher, in which AES is embedded by a “nat-

ural” mapping. BES operations involve only computations in F. This
permits to describe AES using polynomial equation systems. Solving
them means to find the key or an alias, and therefore to break the code.

The state spaces of AES and BES are respectively A = F16 and
B = F128. The basic tool for embedding is the conjugation φ, taking for
each value in F eight successive square powers.

F 3 a 7−→ φ(a) = ã = (a20
, a21

, ..., a27
) ∈ F8 (4)

Fn 3 a 7−→ φ(a) = ã = (φ(a0), ..., φ(a7)) ∈ F8n (5)

It is easily verified that (with 0−1 = 0)

φ(a + a′) = φ(a) + φ(a′) and φ(a−1) = φ(a)−1 (6)

and we define BA = φ(A) ⊂ B as the subset of B corresponding to A.
Let p, c ∈ B be the plaintext and ciphertext, respectively; wi, xi ∈ B

(0 ≤ i ≤ 9) the state vectors before and after the inversion phases, and
hi ∈ B the used keys.

2.1 Correspondence
The matrix LA : F ' GF (2)8 → GF (2)8 ' F for the one-byte affine

transformation in the S-box phase can be represented by the polynomial
function f : F → F:

f(a) =
7∑

k=0

λka
2k

(7)
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with

λ0 = t2 + 1 λ4 = t7 + t6 + t5 + t4 + t2

λ1 = t3 + 1 λ5 = 1
λ2 = t7 + t6 + t5 + t4 + t3 + 1 λ6 = t7 + t5 + t4 + t2 + 1
λ3 = t5 + t2 + 1 λ7 = t7 + t3 + t2 + t + 1

(8)

Working in B, LB(a) = φ(LA(a)) = (f(a)2
0
, . . . , f(a)2

7
). The suc-

cessive squares of f are needed, and the answer is given by a simple
induction with basic step

(f(a))2 =

(
7∑

k=0

λka
2k

)2

=
7∑

k=0

λ2
ka

2k·2 =
7∑

k=0

λ2
ka

2k+1
(9)

The resulting matrix, still indicated with LB, is

LB = [lij ]i,j=0,...7 with lij = λ2i

(8−i+j) mod 8
(10)

The global transformation LinB : F128 → F128 is the block diagonal
matrix with 16 blocks equal to LB.

The AES S-box constant cA = 63 = t6 + t5 + t + 1 ∈ F goes into:

φ(cA) = (63, C2, 35, 66, D3, 2F, 39, 36) = (t6 + t5 + t + 1, t7 + t6 + t,

t5 + t4 + t2 + 1, t6 + t5 + t2 + t, t7 + t6 + t4 + t + 1, (11)
t5 + t3 + t2 + t + 1, t5 + t4 + t3 + 1, t5 + t4 + t2 + t)

The corresponding BES vector cB is obtained using sufficient copies

cB = φ(cA, . . . , cA︸ ︷︷ ︸
16

) = (φ(cA), . . . , φ(cA)︸ ︷︷ ︸
16

) [cB]i = [φ(cA)]i mod 8 (12)

The AES ShiftRows may be represented by RA : F16 → F16.

RA =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0



(13)
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“Expanding” each 1 in RA with an identity matrix of order 8, I8, and
each 0 with a zero (8× 8) matrix, we have RB : F128 → F128.

The AES MixColumns may be represented by CA : F4 → F4:

CA =


t t + 1 1 1
1 t t + 1 1
1 1 t t + 1

t + 1 1 1 t

 (14)

The AES transformation is given by the MixA : F16 → F16 block
diagonal matrix having as blocks four copies of CA. In order to obtain
the corresponding matrix we first need to compute C

(k)
B , for k = 0, . . . , 7:

C
(k)
B =


t2

k
(t + 1)2

k
1 1

1 t2
k

(t + 1)2
k

1
1 1 t2

k
(t + 1)2

k

(t + 1)2
k

1 1 t2
k

 (15)

where

t2
0

= t t2
3

= t4 + t3 + t + 1 t2
6

= t6 + t3 + t2 + 1
t2

1
= t2 t2

4
= t6 + t4 + t3 + t2 + t t2

7
= t7 + t6 + t5 + t4 + t3 + t

t2
2

= t4 t2
5

= t7 + t6 + t5 + t2

(16)
from which (t + 1)2

k
= t2

k
+ 1 are immediately obtained.

In an appropriate basis, the resulting matrix MB : F128 → F128 is a
block diagonal one, with four consecutive copies of C

(k)
B for all possible

k. The change of basis is necessary because of the different positioning of
value powers in φ’s image with respect to our needs. Indeed, if a ∈ F16,
then:

φ(a) = (a0, ..., a
27

0 , a1, . . . , a
27

1 , . . . , a15, . . . , a
27

15) (17)

while to use the block diagonal representation, we would need:

a′ = (a0, ..., a15, a
2
0, . . . , a

2
15, . . . , a

27

0 , . . . , a27

15) (18)

This transformation is given by a permutation matrix PermB : F128 →
F128. To represent it easily, suppose to divide it into (16 × 8) sub-
matrices Phk, h = 0, . . . , 7, k = 0, . . . , 15. Each sub-matrix element
(with i = 0, . . . , 15, j = 0, . . . , 7) is:

[Phk]ij =
{

1 if i = k and j = h
0 else (19)
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Its inverse matrix Perm(−1)
B is equally easy to describe: viewing it as

composed of (8×16) sub-matrices P
(−1)
hk , with h = 0, . . . , 15, k = 0, . . . , 7,

the generic element [P (−1)
hk ]ij (with i = 0, . . . , 7, j = 0, . . . , 15) is defined

exactly as [Phk]ij is. We have MixB = Perm−1
B ·MB· PermB.

We can avoid cA slightly modifying the key generation scheme with
respect to the original proposal. If b, (hB)i ∈ B are the state and key
vectors for the generic ith round of BES, we have:

RoundB(b, (hB)i) = MixB(RB(LinB(b−1) + cB)) + (hB)i

= MB · (b−1) + (CB(cB) + (hB)i) (20)
= MB · (b−1) + (kB)i

with

MB = MixB ·RB ·LinB , CB = MixB ·RB , (kB)i = CB(cB)+ (hB)i

(21)
For the last round, being MixB absent, we have

(kB)i = RB(cB) + (hB)i (22)

but in this particular case we have CB(cB) = RB(cB), and for what con-
cerns this, we can avoid to distinguish the last round from the precedent
ones. The change for key generation scheme is simply the addition of a
constant vector to each obtained round key, and this will be the form of
the system we will work with.

Now we analyze the BES translation for the key generation scheme.

The AES RotWord operation is represented by RWA : F4 → F4.

RWA =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 (23)

For the BES version RWB : F32 −→ F32, replace the 1’s with I8,
and 0’s with the (8× 8) zero matrix.

The S-box is here applied only to a part of the whole vector, and
therefore the matrix dimension changes. The resulting block diag-
onal matrix Link

B : F32 −→ F32 has four blocks equal to LB.

The constant ck
B is given by just four copies of φ(cA):

ck
B = φ(cA, cA, cA, cA) = (φ(cA), . . . , φ(cA)) , [ck

B]i = [φ(cA)]i mod 8

(24)
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The constant vectors Rconi = (ti−1, 0, 0, 0) are mapped into:

(RconB)i = φ(Rconi) = (φ(tr−1), 0, . . . , 0︸ ︷︷ ︸
24

) (25)

We keep using the matrix notation, but here in a functional sense.
We have here to use constants. If ϕi

B : F32 → F32 is the BES ith-round
mapping function for a conjugated word x:

ϕi
B(x) = Link

B(RWB(x))−1 + ck
B + (RconB)i (26)

the generic AES and BES key round matrices are MKi
A and MKi

B :

MKi
A =


0 0 0 ϕi

A

0 I4 0 ϕi
A

0 I4 I4 ϕi
A

0 I4 I4 I4 + ϕi
A

 , MKi
B =


0 0 0 ϕi

B

0 I32 0 ϕi
B

0 I32 I32 ϕi
B

0 I32 I32 I32 + ϕi
B


(27)

A key round is the computation of hi = MKi
B(hr−1).

3. Polynomial Systems
We show how encryption and key generation can be represented by

algebraic systems. All variables satisfy the F-belonging equation y256 +
y = 0.

3.1 Encryption
Remembering that the last round differs slightly from the other ones,

with M∗
B = RB · LinB, the system for codification is [MR] :

w0 = p + k0

xi = wi
−1 i = 0, ..., 9

wi = MBxi−1 + ki i = 1, ..., 9
c = M∗

Bx9 + k10

(28)

Let (j,m) indicate the (8j + m)th component of all the vectors, for
j = 0, . . . , 15 and m = 0, . . . , 7. If no 0-inversion occurs (true for the
53% of encryptions and 85% of 128-bit keys), it is possible to expand
the system as follows, for all possible values of j and m

0 = w0,(j,m) + p(j,m) + k0,(j,m)

0 = xi,(j,m)wi,(j,m) + 1 i = 0, . . . , 9
0 = wi,(j,m) + (MBxi−1)(j,m) + ki,(j,m) i = 1, . . . , 9
0 = c(j,m) + (M∗

Bx9)(j,m) + k10,(j,m)

(29)
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Let α, β ∈ F indicate respectively MB and M∗
B entries. Everything

must be valid for BA, therefore we have (with m + 1 considered mod 8)

S =



0 = w0,(j,m) + p(j,m) + k0,(j,m)

0 = wi,(j,m) + ki,(j,m) +
∑

(j′,m′)

α(j,m),(j′,m′)xi−1,(j′,m′) i = 1, . . . , 9

0 = c(j,m) + k10,(j,m) +
∑

(j′,m′)

β(j,m),(j′,m′)x9,(j′,m′)

0 = xi,(j,m)wi,(j,m) + 1 i = 0, . . . , 9
0 = x2

i,(j,m) + xi,(j,m+1) i = 0, . . . , 9
0 = w2

i,(j,m) + wi,(j,m+1) i = 0, . . . , 9
(30)

Let S`, ` = 1, . . . , 6 be the equations in the `th line of the system
for all values of i, j and m, and I` the ideal they generate. As we
see, the system is very sparse, with S′ = {S1, S2, S3} linear, and the
other equations in S′′ = {S4, S5, S6} quadratic. If k = {ki}, w = {wi},
x = {xi}, we have

Line Number of equations

S1 16 · 8 = 128

S2 9 · 16 · 8 = 1152

S3 16 · 8 = 128

S4 10 · 16 · 8 = 1280

S5 10 · 16 · 8 = 1280

S6 10 · 16 · 8 = 1280

S Total = 5248

Block Number of variables

k 11 · 16 · 8 = 1408

x 10 · 16 · 8 = 1280

w 10 · 16 · 8 = 1280

Total = 3968

3.2 Key Generation
There is an analogous system for key generation. The equations

express all the hi,(j,m) variables in term of the h0,(j,m) ones. The in-
dex ranges for the equations are: i = 1, . . . , 10, ̃, ̃′ = 0, . . . , 3 and
m,m′ = 0, . . . , 7, and γ are the Link

B matrix coefficients.

KB =


H̃i0 = ϕi

B(H̃i−1,3)
H̃i1 = H̃i0 + H̃i−1,1

H̃i2 = H̃i1 + H̃i−1,2

H̃i3 = H̃i2 + H̃i−1,3

= (31)

=


zi,(̃,m) = h254

i−1,(12+[(̃+1) mod 4],m)

hi,(̃,m) = (ck
B + (RconB)i)(̃,m) +

∑
(̃′,m′)

γ(̃,m)(̃′,m′)zi,(̃′,m′)

hi,(4s+̃,m) = hi,(4(s−1)+̃,m) + hi−1,(4s+̃,m) s = 1, 2, 3
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Let cRi = ck
B + (RconB)i be the vector in each round, and its com-

ponents δi. Thanks to the third equivalence of (21), with t = 0, . . . , 15
and the conjugation property, we have:

K =



0 = zi,(̃,m) + h254
i−1,(12+[(̃+1) mod 4],m)

0 = hi,(̃,m) + δi,(̃,m) +
∑

(̃′,m′)

γ(̃,m)(̃′,m′)zi,(̃′,m′)

0 = hi,(4s+̃,m) + hi,(4(s−1)+̃,m) + hi−1,(4s+̃,m) s = 1, 2, 3

0 = ki,(t,m) + (CB(cB))(t,m) + hi,(t,m)

0 = z2
i,(̃,m) + zi,(̃,m+1)

0 = h2
i,(̃,m) + hi,(̃,m+1)

(32)

4. Resolution
We are interested in obtaining the key out of the systems S and

K, that is the original key h = φ−1(k?) = {h0, . . . , h15}, where k? =
{k0,(0,m), . . . , k0,(15,m)}.

In order to obtain relations among h (k) components we eliminate all
other variables. We do this:

modifying the way the systems are presented,

doing some “hand” substitutions, and finally

performing Gröbner bases computations (more complicated substi-
tutions, expansions and simplifications) to obtain the final systems.

Note that, for each variable v ∈ k,w, z,h, the conjugation property may
be synthesized by the obvious following relations:

vi,(j,m) = v2m

i,(j,0) m = 0, . . . , 7 (33)

4.1 Encryption
We rewrite S: first of all, we remove the imposed restriction about

inversion, substituting S4 with an equation expressing the true definition
of the general inversion in F. Then we use (33), to remove all the
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variables with index m > 0, obtaining:

S? =



0 = w2m

0,(j,0) + p2m

(j,0) + k2m

0,(j,0)

0 = w2m

i,(j,0) + k2m

i,(j,0) +
∑

(j′,m′)

α(j,m),(j′,m′)x
2m′

i−1,(j′,0) i = 1, . . . , 9

0 = c2m

(j,0) + k2m

10,(j,0) +
∑

(j′,m′)

β(j,m),(j′,m′)x
2m′

9,(j′,0)

0 = xi,(j,0) + w254
i,(j,0) i = 0, . . . , 9

(34)
With the last equation we can remove all the xi,(j,0), and, being each

line a set of successive square powers, we keep only the ones with m = 0:

S? =



0 = w0,(j,0) + p(j,0) + k0,(j,0)

0 = wi,(j,0) + ki,(j,0) +
∑

(j′,m′)

α(j,0),(j′,m′)w
254·2m′

i−1,(j′,0) i = 1, . . . , 9

0 = c(j,0) + k10,(j,0) +
∑

(j′,m′)

β(j,0),(j′,m′)w
254·2m′

9,(j′,0)

(35)
We note that the β coefficients do not depend on j and j′, and the

values are simply the coefficients of f . To simplify notations even more,
we take, mod 255:

ω = (ωi) = 254 · (20, . . . , 27) = (254, 253, 251, 247, 239, 223, 191, 127) ,

ω′ = (ω′
i) = (ω0−127, . . . , ω7−127) = (127, 126, 124, 120, 112, 96, 64, 0)

We can now avoid writing m index:

S? =



0 = w0,j + pj + k0,j

0 = wi,j + ki,j +
∑

(j′,m′)

α(j,0),(j′,m′)w
ωm′
i−1,j′ i = 1, . . . , 9

0 = k10,j + cj +
∑
m′

λm′ w
ωm′
9,j′

(36)

The system has 16+9 ·16+16 = 176 equations in 11 ·16+10 ·16 = 336
variables. Obviously, it expresses nothing but a series of successive sub-
stitutions, down to the last equation. Considering a block lexicographic
(lex) order for which

k10 > w9 > k9 > · · · > w0 > k0 (37)

we have a (not reduced) Gröbner basis [CLO], and the substitutions may
be considered as the complete reduction computation. The resulting set
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of the last 16 equations, where all the w variables are no more present,
is what we are looking for. If qS

j are the resulting polynomials, we have:

k10,j + cj + qS
j (k0, . . . ,k9, p) = 0 j = 0, . . . , 15 (38)

4.2 Key Generation
We get more informations analyzing K. We

substitute z variables in the second line equations.
use the conjugation property,
note that CB(cB) has cA = t6 + t5 + t + 1 in the (j, 0) positions,
and opportune powers in the other ones. This means that the
equations on the fourth line of K, K4, may be reduced (the other
ones being powers of it) to:

hi,(j,0) + ki,(j,0) + cA = 0 (39)

for the above considerations, express everything directly in term
of k variables.
observe that Link

B is a block diagonal matrix, and therefore just
̃′ = ̃ is “active” for each single equation, and what remains is
nothing more than the set of coefficients of the f polynomial.

We define in : N 3 n → in(n) = 12 + [(n + 1) mod 4] ∈ N. After
the elaboration, always remembering the F-belonging equation, we have
the following system (where i = 1, . . . , 10; s, ̃ = 0, . . . , 3 and in the last
version we omit m)

K? =


0 = hi,(̃,0) + δi,(̃,0) +

∑
(̃′,m′)

γ(̃,0)(̃′,m′)h
254·2m′

i−1,(in(̃′),0)

0 = hi,(4s+̃,0) + hi,(4(s−1)+̃,0) + hi−1,(4s+̃,0)

0 = hi,(̃,0) + (ki,(̃,0) + cA)

=

0 = (ki,(̃,0) + cA) + δi,(̃,0) +
∑
m′

γ(̃,0)(̃,m′)(ki−1,(in(̃),0) + cA)ωm′

0 = (ki,(4s+̃,0) + cA) + (ki,(4(s−1)+̃,0) + cA) + (ki−1,(4s+̃,0) + cA)
=

0 = ki,̃ + (cA + δi,(̃,0)) + (ki−1,in(̃) + cA)127·
(∑

m′

λm′(ki−1,in(̃) + cA)ω′
m′
)

0 = ki,4s+̃ + ki,4(s−1)+̃ + ki−1,4s+̃ + cA

Only k variables remain, 160 equations in 176 variables, and by succes-
sive substitutions we can express all the ones with i > 0 as polynomials
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in the “parameters” k0. The equations are a Gröbner basis for several
suitable lex orderings. We may obtain its complete reduction using, e.g.

k10,15 > . . . > k10,0 > · · · > k0,15 > . . . > k0,0 (40)

It is possible to work with h variables to obtain the equations following
the original AES definition, and use (39) only at the end, in order to
obtain the modified key generation scheme. In any case, the result is:

ki,j = qK
i,j(k0) i = 1, . . . , 10 , j = 0, . . . , 15 (41)

In the final phase we merge the results. There are two possibilities,
according to how many (p, c) pairs (related by the same key) are known.

One (p, c) pair : We eliminate all intermediate keys, putting together
the systems S? and K?, refining (37) with (40). We obtain the
entire substitution process once and for all, summarized as follows:

C1 = { qK
10,j(k0) + cj + qS

j (k0, q
K
1,j(k0), . . . , qK

9,j(k0), p) = 0

| j = 0, . . . , 15 }
(42)

a system of 16 equations in 16 variables, having as roots the desired
keys.

More than 10 (p, c) pairs : We use a copy of (38) for each (p, c) pair,
to obtain a system in 176 variables with at least 176 equations,
whose roots give all the keys.

C2 = { k10,j + c
(n)
j + qS

j (k0, . . . ,k9, p
(n)) = 0

| n = 1, . . . , d , j = 0, . . . , 15 }
(43)

These systems are dense, it is very difficult to write them explicitly,
and even more to solve them. Using more than 11 (p, c) the C2 system
becomes overdetermined.

5. Conclusions
K? and most of S? are invariant for all choices of keys. Actually, the

only varying parts of S? are the constant terms of the equations 1 to 16,
and 161 to 176. Besides, for the equations 1 to 16, it can be chosen, too,
if convenient.

When extended, the joint size of K? and S? is of about 500 Kb. Each
of them is a (not reduced) Gröbner basis for several lex orderings, their
union is not. Probably there exists some ordering for which the calculus
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of a Gröbner basis is easier. If we ever can obtain this with reasonable
computational resources, then AES can be declared broken.

Succeeding to calculate the Hilbert series of K?∪S?, we should easily
obtain the number ns of its solutions. We suspect that ns is invariant
for all key and (p, c) choices. Furthermore, we expect that ns expresses
the redundancy of the keyspace of AES. That is, it tells us how many
key choices will set up the same bijection between the cleartext space
and ciphertext space. The number of such bijections is expected to be:

#(AES Keyspace)
ns

(44)

Probably a reasonably simple canonical representation of such bijec-
tions can be found. In this case, if ns is big enough, probably the right
(unique up to the isomorphism) key can be found by means of an ex-
haustive search.
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