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Abstract Revisiting the thirty years-old notions of resource-bounded immunity and sim-
plicity, we investigate the structural characteristics of various immunity notions:
strong immunity, almost immunity, and hyperimmunity as well as their corre-
sponding simplicity notions. We also studyimmunity andk-simplicity and
their extensions: feasibleimmunity and feasiblé-simplicity. Finally, we pro-
pose thek-immune hypothesis as a working hypothesis that ensures the exis-
tence of simple sets INP.
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1. Foundations of Immunity and Simplicity

The original notions of immunity and simplicity date back to mid 1940s. Post
[17] first constructed a simple set for the class of recursively enumerable sets. The
new breed of resource-bounded immunity and simplicity waited to be introduced un-
til mid 1970s by an early work of Flajolet and Steyaert [5]. In their seminal paper,
Flajolet and Steyaert constructed various recursive sets that, for instance, have no infi-
nite DTIME(¢(n))-subsets under the termfdTIME(¢(n))-immune sets.” Later, Ko
and Moore [11] studied the polynomial-time bounded immunity, which is now prefer-
ably calledP-immune sets. Subsequently, B&tar and Scbning [2] considered’-
bi-immune sets, which arB-immune sets whose complements are d&sionmune.
Homer and Maass [8] extensively discussed the cousiP-ioimune sets, known as
NP-simple sets. The importance of these notions was widely recognized in 1980s.
Since these notions can be easily expanded to any complexity(;lassbegin with
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an introduction of the general notions @fimmune setsC-bi-immune sets, and-
simple sets. These notions are further expanded in various manners in later sections.

DEFINITION 1 LetC be any complexity class of languages over alphabet
1 AsetSisC-immuneif S is infinite and there is no infinite subset®in C.
2 A setS is C-bi-immuneif S and S are bothC-immune.
3 A setS is C-simpleif S belongs taC and S is C-immune.

Note that the existence oftasimple set immediately implieS # co-C; however,
the separatiol # co-C does not necessarily guarantee the existenCesinple sets.

Throughout this paper, we set our alphabeto be {0,1}. LetN (or w) denote
the set of all nonnegative integers and §et = N — {0}. All logarithmsare taken
to base 2 and polynomialmeans a multivariate polynomial with integer coefficients.
We assume a standard bijection fraift* to * that is polynomial-time computable
and polynomial-time invertible, whed< is the set of all finite sequences of strings
overX. This bijection enables us to identify<« with ¥*. We usemulti-tape off-line
Turing machinegTMs in short) as a model of computation. Assumed is the reader’s
familiarity with basic complexity classes, suchRsNP, E (linear exponential time),
andEXP (polynomial exponential time). This paper focuses mostly on the complexity
classes lying in thpolynomial-time hierarchy{AF >F TIF | k € N} [12].

We mainly use “partial” functions and all functions are presumed to be single-
valued. Since total functions are also partial functions, we will define function classes
as collections opartial functions and, whenever we need total functions, we will
explicitly indicate thetotality of functions. Now, fixk € N*. The notationFAY
denotes the collection of all single-valued partial functighsuch that there exist
a setB € ¥F | and a polynomial-time deterministic oracle TM satisfying the
following condition: for everyz, if z € dom(f) then M Z(x) halts in an accepting
state and outputg(z) and otherwiseM Z(x) halts in a rejecting state (in this case,
f(x) isundefinedl In particular, writeF P for FAY.

A setA is calledA} -m-reducibleto another seB via a reductionf if f is a total
FAP-function from¥* to * andA = {x | f(x) € B}. If in addition f is honest,
then we say thatl is h-A}Y-m-reducibleto B. Moreover, a sefl is A} -tt-reducibleto
Bviaareduction tripletv, f, «) if (i) v is a totalF AL -function from%* to {0}, (ii) f
is a totalF A} -function fromX* to X* such that, for every, f(z) = (y1, 2, .-, Yx)
for certain stringgy, ya, . . ., yx, Wherek = |v(x)|, (i) « is a totalFA}-function
fromX* x X*to {0, 1} such thatd = {z | a(z, B(f(z))) = 1}, whereB(f(x)) is an
abbreviation of thé:-bit string B(y1)B(y2) - - - B(yx) whenf(x) = (y1,...,yx). If
in addition f is componentwise honésthenA is h-AP-tt-reducibleto B. The notion
of completenessan be induced from its corresponding reducibility.

1The polynomial-time hierarchy consists of the classes defined in the following fashi@n': EOP =

nf =p, EEH — NPER, andl‘lg+1 = co-2£’+1 for any numbek € N.

2A partial functionf from ©* to ©* is polynomially honesthonest for short) if there exists a polynomial
psuch thajz| < p(|f(x)|) for all stringsz € dom(f).

3A partial function fromx* to =<« (which is identified with>*) is componentwise honeithere exists
a polynomialp such that, for everg € dom(f), |z| < p(lyi|) forall: € {1,2,...,k}, provided that

f(@) = (1,92, -, yk)-
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It is well-known thatP-immune sets exist even in the cldss In particular, Ko
and Moore [11] constructed B-immune set that is alsB-tt-complete forE. Note
that no hP-m-complete set foNP can beP-immune since the image ofximmune
set by a polynomial-time computable reduction is either finit€-@émmune. Using a
relativization technique, Bennett and Gill [3] showed thRtEnmune set exists itVNP
relative to a random oracle with probability 1. A recursive oracle relative to wKieh
containsP-immune sets was later constructed by Homer and Maass [8]. Torenvliet and
van Emde Boas [22] strengthened their results by demonstrating a relativized world
whereNP has aP-immune set which is alsNP-simple.

The notion ofC-immunity is closely related to various other notions, which in-
clude complexity cores [13] and instance complexity [15]. We can naturally expand
these characterizations to more genétgtimmune andA} -immune sets. Balzar
and Sckining [2] also built a bridge betwedr-bi-immune sets and finite-to-one re-
ductions. Expanding their argument, we give in Lemma 2 a characterizatioiof
immunity as well ag-immunity.

For any partial functiory from X* to ¥*, the setGraph(f) = {{(z, f(z)) | = €
dom(f)} is called thegraphof f. Let 'SV = FP and letx} SV denote the class
of all single-valued partial functiong such thatf is polynomially boundet and
Graph(f) is in Y. For brevity, we writeNPSV for ©Y'SV. For anyk € N and
any A, B C ¥*, a single-valued partial functiofi from £* to ©* is called axt-
m-quasireduction(Af -m-quasireductionresp.) fromA to B if (i) f is in XFSV
(FAY, resp.), (i) donff) is infinite, and (iii) for any stringc € dom(f), z € A iff
f(x) € B. For any stringu € ¥*, theinverse imagef ~!(u) of f atu is the set

{x € dom(f) | f(x) = u}. Notice thatf ! (u) = 0 if u & ran(f).

LEMMA 2 LetC € {A}, %} | k € N} andS C .
1 S is C-immune if and only if (i)S is infinite and (ii) for every sef3, every
C-m-quasireductiory from S to B, and everyu in B, f~!(u) is finite.
2 S'is C-bi-immune if and only if (i)S is infinite and (ii) for every seB, every
C-m-quasireductiory from S to B, and everyu in $*, f~1(u) is finite.

The characterization given in Lemma 2(2) led Balar and Scbning [2] to in-
troduce a stronger notion &f-bi-immunity: strongP-bi-immunity. A more general
notion, called strong-immunity, will be introduced in Section 2.

Whether ailNP-simple set exists is one of the long-standing open problems because
such a set separatd8® from co-NP. NonethelessNP-simple sets are known to exist
in various relativized worlds. In early 1980s, Homer and Maass [8] andiBaitd1]
constructed relativized worlds where aiP-simple set exists. Later, Vereshchagin
[24] proved that, relative to a random oracle MR-simple set exists with probability
1. From Theorem 9 in Section 2, for instance, it immediately follows thalBn
simple set exists relative to a generic oracle. Torenvliet [21] built an oracle relative
to which aXx¥-simple set exists. For a much higher lexebf the polynomial-time

4A partial function f from £* to ©* is polynomially boundedf there exists a polynomigh such that
|f(x)] < p(|z]) for any stringz € dom(f).
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hierarchy, Bruschi [4] constructed an oracle relative to whithsimple sets exist
using the size lower bounds of certain nonuniform constant-depth circuits.

In the rest of this section, we focus on closure properties of the class Bf all

immune sets because no such closure property has been systematically studied in the
literature. A complexity clas§ is said to beclosed downward under a reductief.
on infinite setdf, for any pair of infinite setsA and B, A <, B andB € C imply
A € C. Here, we study three reducibilities. Lete N. A setA is AL-d-reducible
to Bvia f if f is a totalFAL-function from%* to X< (which is identified with>*)
andA = {z | BN set(f(x)) # 0}, whereset({(y1,y2, - -, Ym)) = {Y1, Y2+ -, Ym }-
By contrast,A is AF-c-reducible toB via f if A is AF-d-reducible toB via f. For
any fixedi € N*, A is AL-itt-reducibleto B via (f, «) if A is AP-tt-reducible toB
via (v, f, ), wherev(z) = 0° for anyz. For any reducibilityr using computatio,
we say thatd is h-C-r-reducibleto B if A is C-r-reducible toB via f (or (f, «)) such
that f is componentwise honest.

Now, we claim that the class of all}-immune sets is closed downward under
h-AP-c-reductions on infinite sets; however, we cannot replace this conjunctive re-
ducibility by disjunctive reducibility.

THEOREM 3 Letk € N*,
1 The class of alE} -immune sets is closed downward undehfi-c-reductions
on infinite sets.
2 The class of aINP-immune sets is not closed undePhd-reductions or hP-
2tt-reductions on infinite sets.

The first claim of Theorem 3 is easy and is shown as follows. Assume that an
infinite set4 is h-AL -c-reducible to &% -immune setB via a componentwise-honest
reductionf. If A contains an infiniteF -subsetC, then consider the sé? = {y |
Jz € Cllz| < p(lyl) ANy € set(f(x))]}, wherep is a polynomial such thgt:| <
p(ly|) for all z and ally € set(f(x)). Clearly, D is an infinite:}'-subset ofB, a
contradiction. Therefore4 is X} -immune.

How complex are:} -simple sets? IntuitivelyC-simple sets are “thin” and thus
cannot be “complete” for the clags As an immediate consequence of Theorem 3(1),
we obtain the following corollary.

COROLLARY 4 Letk € N*. NoXF-simple setis MAF-d-complete foB}.

Recently, Agrawal (cited in [19]) showed, using tN&-levelability of SAT (as-
sumingSAT ¢ P), that noNP-simple set is HR-btt-complete forNP, where SAT
is the set of all satisfiable quantifier-free Boolean formulas. His argument will be
generalized in Section 4 in connectionddyperimmune sets.

2. Strong Immunity and Strong Simplicity

Following the introduction of-bi-immunity, Balcizar and Scbning [2] stepped
forward to introduce the notion of strongR-bi-immunity, which comes from the
quasireducibility-characterization ®&-bi-immunity given in Lemma 2(2). Whil&®-
bi-immunity requires its quasireductions to be finite-to-one, sti®#g-immunity re-
guires the quasireductions to be almost one-to-one, where a quasireduitioalled
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almost one-to-one on setS if the collision set{(z,y) € (dom(f) N S)? | = <
y A f(z) = f(y)} is finite. Such stronglP-bi-immune sets are known to exist even
in the clas< [2].

Generalizing the notion d?-bi-immunity, we can introduce stror@bi-immunity
for any complexity clas€ lying in the polynomial-time hierarchy. Moreover, we
newly introduce the notions of stroidgimmunity and strong@-simplicity. Recall that
¥ F-m-quasireductions are all single-valued functionXJisV for eachk € N*.

DEFINITION 5 LetC € {AF %P | ke N}.

1 A setS is stronglyC-immuneif (i) S is infinite and (ii) for every seB and
everyC-m-quasireductiory from S to B, f is almost one-to-one of.

2 A setS is stronglyC-bi-immuneif S and S are both stronghyC-immune.
3 AsetS is stronglyC-simpleif S is in C and S is stronglyC-immune.

In particular, whenC = P, Definition 5(2) coincides with the notion d?-bi-
immunity originally given in [2].

LEMMA 6 For any complexity clas€ € {A}, X} | k € N}, every stronglyC-
immune set iS-immune and every strong@tsimple set i€-simple.

A major difference betwee@-immunity and stron@-immunity is shown in the
following example. For aniWP-immune setd, the disjoint unio A @ A is alsoNP-
immune; on the contrary, it is not strong¥P-immune becausd & A can be reduced
to A by the almost two-to-one functiofidefined asf(\) = A and f(zb) = z forb €
{0, 1}, whereA is the empty string. Therefore, the class of all strongg-immune
sets is not closed under the disjoint-union operator. Historically, using the structural
difference between these two notions, Balar and Scbning [2] constructed a set in
E which isP-bi-immune but not strongl-bi-immune.

We show a closure property of the class of strorgfifimmune sets. If4 is AT'-m-
reducible toB via a one-to-one honest reductignwe say that is h-AF'-1-reducible
toBvia f.

PROPOSITION 7 Letk € NT,

1 The class of all strongliL} -immune sets is closed downward undeAR-1-
reductions on infinite sets.

2 The class of all strongliNP-immune sets is not closed downward undée-h-
m-reductions on infinite sets.

COROLLARY 8 For each levelk € N, there is no strongly:F-simple set that is
h-AF-1-complete fob:} .

Finally, we turn our interest to relativization. For edclke N7, it is easy to show
that a stronglyE} -simple set exists relative to a recursive oracle (similar to Proposition

5Thedisjoint unionof A andB is the sef{0z | z € A} U {1z | « € B}.
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26). Even relative to a random oracle, there exists a stroNgtysimple set with
probability 1 (similar to Proposition 27). Employing weak forcing, we now prove the
following relativization result.

THEOREM 9 A stronglyNP-simple set exists relative to a generic oracle

3. Almost Immunity and Almost Simplicity

We have shown in the previous section that str6Agymunity and its simplicity
strengthen the ordinary notion Gfimmunity andC-simplicity. In contrast to these
notions, Orponen [14] and Orponen, Russo, andiBicty [16] expandedP-immunity
to the new notion of almogP-immunity. The complementary notion of almdat
immunity under the terni-levelability (a more general term “levelable sets” was first
used by Ko [10] in a resource-bounded setting) was extensively discussed by Orponen
et al. [16]. Naturally, we can generalize these notions to aléstmunity andC-
levelability for any complexity clas§. Furthermore, we newly introduce the notion
of almostC-bi-immunity and almos€-simplicity.

DEFINITION 10 LetC be any complexity class.
1 AsetS isalmostC-immuneif S is the union of &-immune set and a set (h
2 An infinite set ig-levelableif it is not almostC-immune.
3 A setS is almostC-bi-immuneif S and S are both almos€-immune.

4 A setS is almostC-simpleif S is an infinite set irC and S is the union of a set
Ain C and aC-immune seB, where the differenc® \ A is infinite.

It follows from Definition 10(1) that every almogt-immune set is infinite since
so is evenC-immune set. The definition of almoStsimplicity in Definition 10(4) is
slightly different from other simplicity definitions because the infinity condition of the
differenceB\ A is necessary to guarantée# co-C, provided that an almosgtsimple
set exists.

LEMMA 11 LetC be any complexity class closed under finite variations, finite union
and finite intersection. If an almo6tsimple set exists, theh+# co-C.

Lemma 11 is shown as follows. Take any sesuch thatS = A U B for a set
A € C and aC-immune setB. Suppos& = co-C. Note thatB\ A C B and
B\ A= S\ A €C. SinceB isC-immune,B \ A must be finite.

The following lemma is immediate from Definition 10.

LEMMA 12 For any complexity clas€, everyC-immune set is almost-immune
and everyC-simple set is almogt-simple.

Several characterizations of almddtimmunity andP-levelability are shown in
[16] in terms of maximalP-subsets and-to-finite reductions. We can naturally ex-
pand these characterizations to almagt-immunity andA? -levelability (but not to
the X-level classes of the polynomial-time hierarchy).
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To understand the characteristics of alm@stmmunity, we begin with a simple
observation. Itis known in [16] that any honestly padd&bk not inP is P-levelable.
As observed in [18], the essence of this assertion is thdt ¢ P and A is length-
increasingP-m-selfreducible ther is P-levelable, whered is length-increasing’-
m-selfreducibléf A is C-m-reducible toA via a certain length-increasing reduction.
This observation can be generalizedY§-levelable sets in the following lemma.

LEMMA 13 Letk € Nt andA C X~ Assuming thatd ¢ AP if A is length-
increasingAl -m-selfreducible, themd and A are bothAT-levelable. Thus, if\l #
¥P thenx! as well aslIt has aAf-levelable set.

Most knownNP-m-complete sets are known to be honestly paddable and thus, by
Lemma 13, the complements of these setsRatevelable sets, which are al$dP-
levelable. Therefore, most knowsiP-m-complete sets cannot be almd&?-simple.

This result can be compared to Proposition 16.

Now, we assume a standard effective enumerdtiar} <+ of all nondeterministic
TMs ¢,. For each index, define the setV, = {z | ¢s(x)|= 1}, where ‘v (z)]”
means thap, eventually halts on input. Fix £ € N. LetNP ;, denote the collection
of all setsW, such that, for any string € Wy, the running time ofp, on inputz is at
most|s| - |z|* + |s|. Moreover, we seINDEX ) = {s | W, € NP;,}. Note that
NP = Upen NP ().

Earlier, Ko and Moore [11] considered the resource-bounded notion of “productive
sets.” Another formulation based &P ;) was later given by Joseph and Young [9],
who used the terminology df-creative sets, where: is any number irfNT. They
showed that everk-creative set i¥-m-complete folNP. Orponen et al. [16] showed
that, unles®® = NP, every honestly-creative set i-levelable by demonstrating
that any honestly-creative set is length-increasiiigm-selfreducible. From Lemma
13, it follows that any honestly-creative set and its complement are bBtkevelable.
Consequently, we obtain the following result.

COROLLARY 14 For anyk € NT, no honestlyk-creative set is almo¥P-simple.

Our notion of almos€-simplicity is similar to what Uspenskii [23] discussed under
the term “pseudosimplicity.” Here, we give a resource-bounded version of his pseu-
dosimplicity. A setS is calledC-pseudosimplé there is an infiniteC-subsetA of S
such thatS U A is C-simple. AlthoughC-simple sets cannot b&pseudosimple by
our definition, any infinite-pseudosimple set is almastsimple. The latter claim is
shown as follows. Suppose this an infiniteC-pseudosimple set antlis aC-subset
of S for which S U A is C-simple. This means that \ A is C-immune. ThereforeS
is almostC-simple.

6A set S is polynomially paddablépaddable in short) if there is an one-to-one totBP-function pad
(called thepadding functioh from ¥* to ¥* such that, for all pair§z,y) € 2* x ¥*, z € S iff
pad({z,y)) € S. AsetS is honestly paddabl# it is paddable with a padding function that is component-
wise honest.

A setS is calledk-creativeif there exists a functiorf € FP such that, for any index € INDEX 1,
f(@) € Siff f(¢) € W;. This functionf is called theproductive functiorfor S. If in addition f is honest,

S is calledhonestlyk-creative
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The following theorem shows a close connection among simplicity, almost simplic-
ity, and pseudosimplicity.

THEOREM 15 For eachk € NT, the following three statements are equivalent.
1 There exists &! -simple set.
2 There exists an infinite} -pseudosimple set ip.
3 There exists an almos; -simple set irP.

The most essential part of Theorem 15 is the implication from 1 to 2. Assume that
S is an almost&:F'-simple set. Letd; = 1S andB; = 1S. Clearly, B is infinite.
Note thatA; is a>F-subset ofl~*. SinceS is ©F-immune andB; C 15, B; is
YP-immune. SinceB; = 1¥* N A, the seX* U A; is XF-simple. Hence(%* is
¥ F-pseudosimple, as required. Similarly;* is X} -pseudosimple.

Theorem 15 indicates the importance of the structur® af the course of the
study of©F -simplicity. In a relativized world where &F -simple set exists [4], since
Theorem 15 relativizes, there exists an alndstsimple set withirP.

Finally, we briefly discuss a closure property of the class of all allB§simmune
sets under polynomial-time reductions. For each nuntber N*, the class of all
almostX} -immune sets is closed underiz-m-reductions on infinite sets. This im-
mediately implies the following consequence.

PROPOSITION 16 For each numbek € N*, there is no almosE? -simple set that
is h-AP-m-complete foEr .

4. Hyperimmunity and Hypersimplicity

Since Post [17] constructed a so-callegbersimpleset, the notions of hyperim-
munity and hypersimplicity have played a significant role in the progress of classical
recursion theory. A resource-bounded version of these notions was first considered by
Yamakami [26] and studied extensively by Schaefer and Fenner [19]. The definition
of Schaefer and Fenner is based on the notion of “haN&sarrays”, which differs
from the notion of “strong arrays” in recursion theory, where a strong array is a series
of pairwise disjoint finite sets. For our formalization, we demand only “eventually
disjointness” for sets in an array rather than “pairwise disjointness.”

A binary stringz is said torepresenta finite set{a;, as, ..., ax} if and only if
x = (a1, as,...,a;) anda; < as < --- < ay in the lexicographic order oR*. For
convenience, we say that a sesurpassesanother sef3 if there exists a string € A
satisfyingz > x (lexicographically) for all strings: in B.

DEFINITION 17 Letk € N*, A C ¥*, andC € {Z}, A} }.

1 An infinite sequenc® = {D;}ex- of finite sets is called &} -array (A} -
array, resp.) if there exists a single-valued partial functipin >FSV (FAY,
resp.) such that (i) dofy) is infinite, (i) D, # 0 and f(s) representsD; for
any strings € dom(f), and (iii) Dy = 0 for any strings ¢ dom(f). This f
is called thesupporting functiorof D and the SeUsedOI'T’(f) D, is called the
supportof D. Thewidth of D is the supremum of the cardinalityp,| over all

s € dom(f).
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2 AcC-array D has aninfinite supporif the support ofD is infinite.

3 AcC-array {D;}sex- via f is polynomially honesi{honest in short) if f is
componentwise honest; namely, there exists a polyngnsiisfying thats| <
p(|z|) for any s € dom(f) and anyz € D.

4 AC-array {D,}scs~ via f is eventually disjointf, for every stringe in dom( f),
there exists a string in dom(f) such thaty > = (lexicographically),D,, sur-
passed,, andD, N D, = (.

5 AC-array {Ds}scx- via f intersectsA if D, N A # () for all s € dom(f).

The honesty condition of afrarray guarantees that the array is eventually disjoint.
In addition, any eventually-disjoir@-array has an infinite support because, for any
elementD in the array, we can always find another disjoint elenieht

A simple relationship betweexn} -simplicity and a honest} -array is given in the
following lemma, which was implicitly proven by Yamakami [26] and later explicitly
stated in [19] for the case wheke= 1.

LEMMA 18 Letk € NT and letA4 be any>F-simple set. For every numbée N,
there is no honest} -array D such that (i) the width oD is at most¢ and (i) D
intersectsA.

We introduce below the notions 6fhyperimmunity and honesgthyperimmunity.

DEFINITION 19 LetC € {AY, P | k € N}

1 A setS is (honestly)C-hyperimmunef S is infinite and there is no (honest)
C-array D such thatD is eventually disjoint an® intersectsA.

2 A setS is (honestly)C-bi-hyperimmuneif S and S are both (honestlyl-
hyperimmune.

3 AsetS is (honestly)C-hypersimpléf S € C andS is (honestly-hyperimmune.

Note that NP-hyperimmunity” defined by Schaefer and Fenner [19] coincides
with our honestNP-hyperimmunity. The following relationship between immunity
and hyperimmunity can be obtained immediately from Definition 19.

LEMMA 20 For any complexity clas€ € {XF AP | k € N}, every honestlg-
hyperimmune set iS-immune and every honestlyhypersimple set i€-simple.

In late 1970s, Selman [20] introduced the notionRekelective sets, which are
analogues of semi-recursive sets in recursion theory. These sets cdrvictainity
to P-hyperimmunity. In general, for any clagsof total functions, we say that a set
S is F-selectiveif there exists a function (called theelecto} f in F such that, for
all pairs (z,y) € * x X*, (i) f(z,y) € {z,y} and (i) {z,y} NS # 0 implies
f(z,y) € S. Recall the partial function class! SV. We use the notatiol. SV, to
denote the collection of afbtal functions inSESV.

LEMMA 21 Letk € N*. EveryX}-immuneX} SV,-selective set is honestly! -
hyperimmune.

(c) 2004 IFIP



90

We give the proof of Lemma 21. Assume tiséis >-F SV, -selective via a selectgr
and has a hone&t -arrayD = {D;}scx- intersectingS via a supporting functiop.
For eachy € dom(g), assumingD, = {z1,22,..., e} Withz; < 22 < -+ < 2y,
lety; = 21 andy;+1 = f(y;, zi41) for everyi € {1,2,...,m — 1} and then define
h(y) = Ym. Thishis honestand ixY SV. The setB = {x | Jy[y € domh)Ah(y) =
x|} is therefore infinite and it since donif) is infinite andh is honest. Because
B C S, B cannot b@f-immune. Note that our proof relativizes.

Observe that the complement o83 SV, -selective sef is alsoX} SV, -selective
because the exchange of the output string of any selectdr fives rise to a selector
for S. It also follows from Lemma 21 that eveNP-simpleP-selective set is honestly
NP-hypersimple since the complement of dmselective set is alsB-selective.

Next, we show that strong-immunity does not imply honegt-hyperimmunity
within the clas€t. Earlier, Balézar and Scbning [2] created a strongly-bi-immune
setS in E with the density SN¥<"| = 2»*1 —pn—1foralln € N. For eachy, let D,
consist of the firstr| + 1 elements o&l*!. Clearly, D, intersectsS. This implies that
S is not honestlyP-hyperimmune. Therefore, we obtain the following proposition.

PROPOSITION 22 There exists a strongly-bi-immune set ifi that is not honestly
P-hyperimmune.

As a main theorem, we show tleT-incompleteness dt! -hypersimple sets. Gen-
erally, we say thatl is AY-T-reducibleto B if there exists an oraclAl-machine)M
which recognizes! with access t@B as an oracle. If in addition/ on inputz makes
only queriesy to B that satisfy|z| < p(|y|), wherep is a fixed polynomial, then we
say thatA is h-Al-T-reducibleto B via M. This reduction machiné/ is simply
calledhonest

THEOREM 23 Letk € N™.
1 NoXxF-hypersimple set is P-T-complete fof .
2 No honestly} -hypersimple set is h-P-T-complete fof .

Note that it is not clear if we can replace tReT-completeness in Theorem 23
by the AP-T-completeness. Theorem 23 follows from Lemma 24 in the following
fashion. We prove only the first claim. Assume tiiais a X} -hypersimple set that
is P-T-complete for:}. Thus,AY # XF. Clearly, B is in EXP and everyX} -
set isP-T-reducible toB. By Lemma 24, every:! -set is almost\F -immune. This
contradicts Lemma 13. ThereforB,cannot best -hypersimple.

LEMMA 24 Letk € N* and letA be any infinite set ifC} .

1 If Ais P-T-reducible to &F -hyperimmune set iEXP, thenA is almostA? -
immune.

2 If Ais h-P-T-reducible to a honesty} -hyperimmune set, theA is almost
AP-immune.

Lemma 24 needs a key idea of Agrawal (mentioned earlier), who showed that no
NP-simple set is HR-btt-complete forNP. We extend his core argument to Lemma
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25. For convenience, a complexity classs said to beclosed under intersection with
AP -setsif, for any setA in C and any seB in A}, the intersectiod N BisinC.

LEMMA 25 LetC be any complexity class containidyg, such that is closed under
intersection withA} -sets. Letd be anyA} -levelable setir. If A is A} -T-reducible
to B via a reduction machiné/, then there exists an infinite s€tin C such that
Q(M,B,z)N B # (forall z € C.

Bruschi [4] demonstrated how to construct a recursive oracle relative to which a
¥ P-simple set exists. We can easily modify his proof to obtaihiselective set that is
¥ P-simple in arelativized world. Since Lemma 21 relativizes, we obtain the following
proposition.

PROPOSITION 26 For eachk € N1, there exists a recursive oracke such that a
P (A)-hypersimple set exists.

As Schaefer and Fenner [19] demonstrated, it is relatively easy to prove the exis-
tence of an honegfP“-hypersimple set relative to a generic ora€le By contrast,
Vereshchagin [24] proved the existence obd-simple set relative to arandom oracle
with probability 1. Again, we modify his proof to construct a relativiZeéeelective
NP-simple set. From Lemma 21, the next proposition follows.

PROPOSITION 27 With probability 1, an honestl){iP~ -hypersimple set exists rel-
ative to a random oracleX.

An important open problem is to prove that, at each lévelf the polynomial-
time hierarchy, honest!-hypersimple sets exist relative to a random oracle with
probability 1.

5. Completeness Under Non-Honest Reductions

Immunity has a deep connection to various completeness notions. For example,
there is a simple, tt-complete set; however, no simple set is btt-complete. In the pre-
vious sections, we have shown that various types of resource-bounded simple sets
cannot be complete under certain polynomial-time honest reductions. This section
instead focuses on the incompleteness of simple sets under non-honest reductions.

To remove the honesty condition from reductions, we often need to make extra
assumptions for similar incompleteness results. In mid 1980s, Hartmanis, Li, and
Yesha [6] proved that (i) n&WP-immune set inEXP is P-m-hard forNP if NP ¢
SUBEXP and (ii) noNP-simple set is?>-m-complete ifNP N co-NP ¢ SUBEXP.

These results can be expanded to Anlevel of the polynomial-time hierarchy and of
the subexponential-time hieraréhyVe also improve the latter claim.

8The A-level of the subexponential-time hierarchy is defined &7BAEXF = SUBEXP and

SUBAPXY = SUBEXPZX for everyk € N, whereSUBEXP# denoteg.. , DTIMEA (2°) for

any oracled. WhenA = ), we simply writeSUBEXP for SUBEXPA,

>0
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To describe our expansion, we need the unambiguous complexity a1}
introduced by Yamakami [25]. For any complexity cl&ss setd is in U(C) (or UC) if
there exists a single-valued partial functiésuch that (i)f is polynomially bounded,
(i) Graph(f) € C, and (jii) A = dom(f) [25].

PROPOSITION 28 Letj andk be any nonnegative integers.

1 NoX}-immune seti\y*" is Aj’-m-hard forZ if 37 ¢ SUBAPXP ..

2 NoXf-simple setisAl-m-complete foEY if U(SE NIIE) ¢ SUBAEXP,

Note that Proposition 28(2) directly follows from Theorem 29(2).

The original result of Hartmanis et al. refers to fARem-incompleteness afP-
simple sets. Recently, Schaefer and Fenner [19] showed a similar result fBr the
1tt-completeness. They proved that N&-simple set isP-1tt-complete forNP if
UP ¢ SUBEXP. A key to their proof is the faétthat Sep(SUBEXP, NP) implies
UP C SUBEXP, whereSep(C, D) means the separation property in [25] that, for any
two disjoint sets4, B € D, there exists a s&t € CNco-C satisfying thatd C S C B.

The following theorem shows that the assumpfién ¢ SUBEXP in [19] can be
replaced byU(NP N co-NP) ¢ SUBEXP.

THEOREM 29 Letj, k € N*,
1 NoXj-immune setil\7*" is AP'-1tt-hard forU(X), NTI}) if U(Z), NII}) €
SUBAEXP

max{j,k}"
2 NoXf-simple setisAl-1tt-complete fol if U(SE NIIE) ¢ SUBAEXP.

Theorem 29 follows from the technical lemmas: Lemmas 30 and 31. The proof
for its second claim proceeds as follows. Assume fhag AL-1tt-complete for=t
Choose an infinite set € U(SF N 1IY) — SUBAEXP which is of the form{z |
Jy[(x,y) € Graph(f)]} for a certain polynomially-bounded partial functigrwhose
graph is inSt N IIY. Similar to [25], setd; = {(z,2) | Jy[z < y A (z,y) €
Graph(f)]} and Ay = {(z,2) | Jy[z < y A (z,y) € Graph(f)]}. Clearly,A; and
Ay are inU(XE NTIF) — SUBAEXP SinceA; is AL-1tt-reducible toB, by Lemma
30, there exists a sét € A}z such thatd; N C is infinite and coinfinite andl; N C'is
h-AP-1tt-reducible taB. Applying Lemma 31(1), we obtain a sbte Al and a total
FAP-function f such thatd; N C N D is finite, f AF-m-reducesd; N C to B, and f
is honest on the domaiP. SinceAd, C A; NC, f(As) C B. Moreover,A; N D is
infinite. The honesty of on D implies thatB has an infinite} -subsetf (4, N D).

The key idea of Hartmanis et al. [6] is to find a set that can be honestly reducible.
Lemma 30 is a “1tt” version of a technical part of [6].

LEMMA 30 Letj k € N*. Assume thatl ¢ SUBARXC ., and B € APXP. If

A is A}-1tt-reducible toB, then there exists a sét in A}’ such that ()A N C'is
h-AP-1tt-reducible toB and (i) AN C and A N C are infinite and coinfinite.

9Actually, the result of Schaefer and Fenner can be strengthened in the following way:
Sep(SUBEXP, U(NP N co-NP)) if and only if U(NP N co-NP) C SUBEXP. This is obtained by
analyzing a similar result in [25].
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LEMMA 31 Letk € Nt and A, B C ¥*. Assume thaB is XF-immune and4 is
h-AP-1tt-reducible toB.

1 If A € 3}, then there exist a séb € A}, and a total functionf € FA}, such

that AN D is finite, f A} -m-reducesA to B, and f is honest on the domaiP.

2 Abelongs tac? NIIE if and only if A belongs toAY.

6. Limited Immunity and Simplicity

Within our current knowledge, we cannot prove or disprove the existenceMNiPan
simple set. The difficulty comes from the fact thatldR-immune set requiresvery
NP-subset to be finite. If we restrict our attention to certain type®NBfsubsets,
then we may overcome the difficulty. Under the nameé-@fnmune sets, Homer [7]
required onlyNP ;) -subsets, for a fixed numbgr to be finite. He then demonstrated
how to construct &-simple set withinNP using Ladner’s delayed diagonalization
technique.

In this section, we investigate the notions obtained by restricting the requirements
for immunity and simplicity. We first review Homer’s notions dfimmunity and
k-simplicity.

DEFINITION 32 Letk be any number itN™.

1 AsetS'is k-immuneif S is infinite and there is no indexin IN DE X ;) such
that W; is infinite andiW; C S.
2 A setS is k-simpleif S belongs taNP and S is k-immune.

An “effective” version of immune and simple sets, called effectively immune and
effectively simple sets, has been studied in recursion theory. Effectively simple sets
are known to be T-complete and there also exists an effectively simple tt-complete
set. If A is strongly effectively immune, theA cannot be immune. Analogously,
we consider a resource-bounded version of such effectively immune and simple sets.
Here, we freely identify binary strings with natural numbers using the lexicographic
order onx*.

DEFINITION 33 Letk € NT.
1 AsetS isfeasiblyk-immuneif (i) S is infinite and (ii) there exists a polynomial
p such that, for every indexin INDEX ), W; C S implies|W;| < 2P(),
2 A setS is feasiblyk-simpleif S is in NP and S is feasiblyk-immune.

We can easily prove the existence of a feasiblimmune set inAY for each
k € N*. From Definition 33, every feasibly-simple set isk-simple. The converse,
however, does not hold since there exiskssimple set which is not feasibksimple
for each numbek in N*. The theorem below is slightly stronger than this claim since
any feasiblyk-simple set is also feasibly-simple.

THEOREM 34 For eachk € N7, there exists &-simple set which is not feasibly
1-simple.
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We return to the old question of whethBiP-simple sets exist. There seems no
strong evidence that suggests the existence of such a set. Only relativization provides
a world whereNP-simple sets exist. At the same time, we can also construct another
world where these sets do not exist. These relativization results clearly indicate that
the question of whethé¥P-simple sets exist needs unrelativizable proof techniques.

In the past few decades, the Berman-Hartmanis isomorphism conjecture has served
as a working hypothesis in connection®-complete problems. By contrast, there
has been no “natural” working hypothesis that yields the existend&e$imple sets.

For example, the hypothesis £ NP does not suffice since Homer and Maass [8]
showed a relativized world where the assumpfibe: NP does not imply the exis-
tence of arlNP-simple set. Motivated by Homerls-simplicity result, we propose the
following working hypothesis:

= The k-immune hypothesis: There exists a positive integérsuch that every
infinite NP set has an infinit&P ;) -subset.

Under this hypothesis, we can derive the desired consequence: the exist&ee of
simple sets.

LEMMA 35 If the k-immune hypothesis holds, then there exist&®asimple set.

Assume that thé-immune hypothesis is true; that is, there exists a positive integer
k such that every infinitéVP-set has an infinit&P ,)-subset. Consider ariysimple
setA. We claim thatA is NP-simple. If A is notNP-simple, thenA has an infinite
NP-subsetB. By our assumption3 contains an infiniteNP ;,-subset. Henced
cannot bek-simple, a contradiction. Thereford,is NP-simple.

To close this section, we claim the following result concerningitiiemmune hy-
pothesis. The proof uses weak forcing.

ProroOSITION 36 Thek-immune hypothesis fails relative to a generic oracle.

Final Note. All the proofs that are omitted from this extended abstract will appear
in its forthcoming complete version.
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