
THE FIRING SQUAD SYNCHRONIZATION

PROBLEM WITH MANY GENERALS FOR

ONE-DIMENSIONAL CA

Hubert Schmid, Thomas Worsch
IAKS Vollmar, Fakultät für Informatik

Universität Karlsruhe, Germany

worsch@ira.uka.de

Abstract The Firing Squad Synchronization Problem is one of the classical prob-
lems for cellular automata. In this paper we consider the case of more
than one general. A synchronous and an asynchronous version of the
problem are considered. In the latter case the generals may start their
activities at different times. In the synchronous case there are optimum-
time solutions. Very simple and elegant techniques for constructing one
of them are the main contribution of this paper on the algorithmic side.
For the asynchronous case an exact formula for the optimum synchro-
nization time of each instance is derived. We prove that no CA can solve
all instances in optimum time, but we describe a CA whose running time
is very close to it; it only needs additional log n steps.

Keywords: Cellular automata, Firing Squad Synchronization Problem

Introduction

The Firing Squad Synchronization Problem (FSSP) is one of the most well
studied algorithmic problems for cellular automata. Proposed by Myhill in
1957, first solutions date back at least to the early sixties [2].

With a few exceptions there are mainly two types of results. Part of the
research is concerned with the task to find CA with as few states as possible
which still solve the problem (possibly in optimum time) [7]. In other papers
modifications and generalizations of the classical FSSP are investigated. The
present paper is of the second type.

It is organized as follows. In Section 1 we quickly review the basic definitions
of cellular automata and then proceed to describe the generalized synchroniza-
tion problems we are interested in. In Section 2 an exact formula for the
optimum time of any instance of the asynchronous multi-general FSSP is de-

111

(c) 2004 IFIP

rived and it is shown that no CA solving the problem in general can achieve
this time for all instances. Concrete CA algorithms for the synchronous and the
asynchronous multi-general FSSP are the topic of Sections 3 and 4 respectively.

The results presented are part of the diploma thesis of the first author [10].

1. Basic notions

For two sets A and B we write BA for the set of all functions f : A → B. The
set of integers will be denoted by Z, the set of positive integers by N and the
set of nonnegative integers by N0.

1.1 Cellular automata

We assume that the reader is familiar with the standard model of one-
dimensional CA with von Neumann neighborhood of radius 1, that is we use
neighborhood N = {−1, 0, 1}. We will denote by S the finite set of states and
by δ : SN → S the local transition function.

A global configuration is a mapping C ∈ SZ. Given a configuration C and
a cell i ∈ Z we write C(i + N) for the local configuration observed by cell i
which is defined as C(i + N) : N → S : n 7→ C(i + n). The local transition
function induces the global transition function ∆ : SZ → SZ as usual: For a
configuration C : Z → S, its successor configuration ∆(C) is defined by the
requirement that for all i ∈ Z one has: (∆(C))(i) = δ(C(i + N)). If C0 is a
configuration we sometimes abbreviate ∆t(C0) as Ct.

We will assume that there is always a designated quiescent state q, which
for the rest of this paper is in fact even a “dead” state in the sense that C(i) =
q =⇒ (∆(C))(i) = q.

1.2 Firing squad synchronization problems

The standard FSSP. The standard formulation of the FSSP requires the
existence of a designated state g for the “general”, a designated state s for the
“soldiers” and designated “firing” state f.

The task is to find a CA (S, δ) with {q, g, s, f} ⊆ S such that:

δ(`) = q for all local configurations such that `(0) = q;

δ(`) = `(0) for all ` : N → {q, s}, i.e. cells in state s don’t start any
activities “by themselves”.

These conditions are always required. We will not list these requirements
again, but it is to be understood that the CA for the generalized FSSPs con-
sidered below have to fulfill them, too.

For any n ∈ N let C0
n denote the configuration

C0
n(i) =

q iff not 0 ≤ i < n

g iff i = 0

s otherwise, i.e. iff 1 ≤ i < n

112

(c) 2004 IFIP

Then for each n there has to be a t ∈ N0 such that the CA fires after
t time steps when started with initial configuration C0

n, i.e. all initially
non-quiescent cells enter the firing state after the same number of steps
for the first time:

– for all 0 ≤ i < n: Ct
n(i) = f and

– for all 0 ≤ i < n and for all t′ < t: Ct′

n (i) 6= f.

In this case one problem instance is completely characterized by the number n
of cells to be synchronized.

There are several generalizations and modifications which have been consid-
ered in the literature. These include different types of underlying “geometries”,
e.g. [1], the inclusion of “faulty” cells, e.g. [13], synchronization in a prescribed
but non-optimum time, e.g. [6] and others. In this paper we are interested in
the case of more than one general.

The synchronous multi-general FSSP. For a generalized problem
which already has been investigated and solved quite some time ago, there is
still one general, but its position is not known. Each problem instance is then
characterized by the number n of cells and the position p, 0 ≤ p < n, of the
general. The first optimum time solution for this problem is due to Moore
[8]. In Section 3 we will describe a different approach which basically allows
to apply any solution developed for the standard FSSP also in this generalized
case.

In the present paper the restriction of having exactly one general is dropped.
In the simpler case each problem instance is characterized by the number n of
cells, a number k ≤ n of generals and arbitrary initial positions 0 ≤ pi < n,
1 ≤ i ≤ k, of the generals. In other words the initial configurations look like
this:

C0
n(i) =

q iff not 0 ≤ i < n

g iff i ∈ {p1, . . . , pk}

s otherwise

We call this the synchronous multi-general FSSP, abbreviated as S-MG-FSSP.
First ideas for its (optimum-time) solution have been sketched by Hisaoka et
al. [3]. In Section 3 we will present a slightly different approach.

The asynchronous Multi-General FSSP. Assume that one wants to
construct the composition of two CA with local rules δ1 and δ2 in the following
sense. Initially all cells use δ1. After some time some cells will observe certain
local configurations indicating that a first sub-goal of the algorithm has been
reached and that now all (non-quiescent) cells should switch to δ2 simultane-
ously. In some applications of this method of constructing new CA form old
ones, different cells will note at different times, that the mode of operation
should be switched.

113

(c) 2004 IFIP

Thus, what is really useful is yet another generalization of the FSSP where
possibly several generals start their work at different times. We call this
the asynchronous multi-general FSSP (where the adjective refers to the asyn-
chronous start of the generals, of course).

In this case each problem instance I = (n, T) is characterized by the number
n of cells (called the length len(I) of I), a number k ≤ n of generals and a set
of pairs T = {(p1, t1), . . . , (pk, tk)}, where the pi, 0 ≤ pi < n, are the arbitrary
initial positions of the generals and each ti ≥ 0 is the point in time when a
general “appears” at position pi and starts to work.

We formalize this as follows. The initial configuration is

C0
n(i) =

{

q iff not 0 ≤ i < n

s iff 0 ≤ i < n

Given a configuration Ct
n its successor configuration Ct+1

n is determined in
two phases:

First, for each pi with (pi, t) ∈ T the state of cell pi in configuration Ct
n

is set to g.

To the resulting configuration then the global transition function is ap-
plied.

This description is not a CA. But in applications the (pi, ti) ∈ T are not some
“external events” but indeed result from a CA which produces certain specific
local configurations observed by cells pi at times ti.

In order to avoid problems (which do not occur in applications anyway)
we slightly restrict the set of allowed problem instances. A general must not
appear in cell pi at time ti if that might already have entered a state different
from s. That is for any two different (pi, ti) ∈ T and (pj , tj) ∈ T must hold:
|tj − ti| < |pj − pi|.

We call this the asynchronous multi-general FSSP, abbreviated as A-MG-
FSSP. Vollmar [14, 15] has described CA solving this problem but did not
investigate questions concerning the optimum time. In general Vollmar’s solu-
tions are considerably slower than the solution described below in Section 4.

1.3 Optimum time for the S-MG-FSSP and the

A-MG-FSSP

Let SP be a solvable synchronization problem with a set I of instances and
f : I → N a function. A CA A solves SP if for each I ∈ I as the initial
configuration the CA A eventually fires. The number of steps needed for this
is denoted as TA(I). We say that f is a lower bound for SP if for each CA A
solving SP holds: ∀I ∈ I : f(I) ≤ TA(I).

If A denotes the set of CA solving SP, it is easy to see [4] that the function
Tmin : I → N defined by Tmin(I) = min{TA(I) | A ∈ A} is a lower bound for
SP and in fact is the greatest lower bound. We call Tmin the optimum time for
SP.

114

(c) 2004 IFIP

Note, that this definition is somewhat non-uniform, because for different I
it may be that Tmin(I) can only be achieved by different CA.

It is one of the surprises of the classical FSSP, that its optimum time can
be achieved by one CA for all instances. But since one is accustomed to that
it will probably come as an even greater surprise, that each CA solving the
asynchronous multi-general FSSP must solve infinitely many instances in a
time which is not optimum time. See Theorem 5 below.

Informally Tmin(I) can be described easily for all synchronization problems
considered in this paper: The optimum time for instance I is the time needed
so that the leftmost and the rightmost cell can send some “information” to the
other end (i.e. the rightmost or the leftmost cell respectively). This consists of
n−1 steps needed to transmit the information plus the number of steps needed
before the border cells can enter a state different from s for the first time. For
example in the standard problem setting it takes n − 1 steps, before a signal
sent by the general at the left end has reached the rightmost cell n−1, resulting
in an optimum time of 2n − 2.

In the asynchronous multi-general case from the general at position pi it
takes pi steps to reach the leftmost cell 0 and n − 1 − pi steps to reach the
rightmost cell n − 1. This should make it plausible that one has

Tmin(I) = n − 1 + max
{

min
i

(ti + pi), min
i

(ti + n − 1 − pi)
}

.

This is the first main result which we are going to prove now.

2. Optimum time for the multi-general FSSPs

Theorem 1 The optimum time for an instance I of the asynchronous multi-
general FSSP with n cells and T = {(p1, t1), . . . , (pk, tk)} is

Tmin(I) = n − 1 + max

{

mini(ti + pi)

n − 1 + mini(ti − pi)

Proof. We split the proof in two parts. First we show (Lemma 2) that the
time given above is indeed a lower bound for the running time of CA solving
the A-MG-FSSP. In Lemma 3 we show that for each I there is a CA solving
the problem and needing only time Tmin(I) for I. 2

Lemma 2 Let A be any CA which solves the asynchronous multi-general FSSP
and let I be any of its instances. Then

TA(I) ≥ Tmin(I) = n − 1 + max

{

mini(ti + pi)

n − 1 + mini(ti − pi)

Proof. The proof is by contradiction and similar to the one for the standard
FSSP. Let A be any CA solving the problem and assume that I is an instance
such that A needs time tf = TA(I) < Tmin(I) for the synchronization. Assume
that for I one has mini(ti + pi) ≤ mini(ti + n − 1 − pi) (the other case can be
treated analogously) and let j be an index such that tj −pj becomes minimum.

115

(c) 2004 IFIP

Let D = {(x, t) | 0 ≤ x < n ∧ t ≥ 0 ∧ x + t ≤ tf} denote the set of all points
in the space-time diagram for instance I which “have an influence” on cell 0 at
time tf . In particular for cell n − 1 one has D ∩ {n − 1} × N0 = {(n − 1, t) |
0 ≤ t ≤ tf − (n − 1)}. But tf − (n − 1) < Tmin(I) − (n − 1) = n − 1 + tj − pj

and the latter is the first time when cell n − 1 could possible have left state s.
Therefore for all t such that (n − 1, t) ∈ D we have Ct

n(n − 1) = s.
Now consider a new instance I ′ which consists of n′ = n + tf + 1 cells and

the same set T as I. While in instance I cell n−1 always was in state s during
the first tf − (n− 1) steps because it had q as its right neighbor, in instance I ′

cell n− 1 will always be in state s during the first tf − (n− 1) steps because it
has s as its right neighbor and again no signals can have reached it until then.

It is an easy exercise to show that as a consequence for all (x, t) ∈ D the
states in the space-time diagrams at positions (x, t) coincide for the instances
I and I ′. In particular for instance I ′ cell 0 will enter state f at time tf . But
at the same time cell (n′ − 1) will still be in state s because it is tf cells to the
right of cell (n − 1) and hence cannot have been reached by any signal. But
this is in contradiction to the requirement that always all cells have the enter
state f simultaneously. 2

Lemma 3 For each instance I of the asynchronous multi-general FSSP there is
a CA A solving the problem for all instances and needing only TA(I) = Tmin(I)
for instance I.

Proof. Let I be any instance and denote by n the number of non-quiescent
cells. Let A be any CA solving the A-MG-FSSP. It is clear that such CA exist.
For example one can send a signal to the left from any general. As soon as the
first signal arrives at the leftmost cell that one becomes the “real” general and
starts an algorithm for the standard FSSP erasing all signals coming from the
right.

Below we will describe a CA An which synchronizes all instances with m ≤ n
cells, and these in optimum time. For instances with more than n cells the CA
either never fires any cell or does fire them synchronously.

Given An and A one can construct a new CA A′ by running those two in
parallel. By definition A′ fires as soon as either A or An would fire. A′ solves
the A-MG-FSSP and only needs optimum time in particular for instance I.

An works as follows. Each general sends a signal to the left and one to the
right. Whenever two such signals meet, they erase each other. When a signal
arrives at the left or right border, a counter is initialized with 0. The counter
then moves to the opposite side with speed 1 and is incremented by 1 in each
step. There are two possibilities:

A counter signal reaches value n before meeting the counter signal coming
from the other end. Then the counter is replaced by a state “∞”, which
is not the firing state and which spreads to all cells.

The counter signals meet before they enter state ∞. Then the maximum
of their values is taken and propagated to all cells with speed 1. Further-

116

(c) 2004 IFIP

more all cells decrement the value by 1 in each step. When 0 is reached,
the cells fire.

In Figure 1 the algorithm is sketched for two instances of length 12; on the left
side T = {(1, 1), (8, 0)} and on the right T = {(1, 0), (8, 0)}. 2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

t 0

1

2

3

4

5

6

5 5 5

4 4 4 4

3 3 3 3 3 3 3

4

2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

1

4

3

2

1

0

5 5

4 4 4 4

3 3 3 3 3 3

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

1

4

3

2

1

0

0

1

2

3

4

5

6

66

5

3

4

2

5

3

4

2

t

Figure 1. Solving instances of the multi-general FSSP with bounded size using a
counter of finite size.

The question now is whether optimum time can be achieved for all instances
by a single CA. In the synchronous case all ti = 0; hence for the S-MG-FSSP
holds:

Tmin(I) = n − 1 + max{min
i

pi, n − 1 − max
i

pi} .

It follows from the algorithm in Section 3 that indeed one has:

Theorem 4 There exists a CA which solves the synchronous multi-general
FSSP in optimum time for all instances.

This has to be contrasted with the result we are going to prove now:

Theorem 5 For each CA with k states solving the asynchronous multi-general
FSSP there are infinitely many instances I such that

TA(I) ≥ Tmin(I) + blogk len(I)c ,

i.e. for which the CA does not achieve optimum synchronization time.

The main building block for the proof is the following lemma:

Lemma 6 Let A be a CA with k states solving the asynchronous multi-general
FSSP. Then for each n there is an instance I of length n such that

TA(I) ≥ Tmin(I) +
⌊

logk

n

2

⌋

.

117

(c) 2004 IFIP

Proof. If blogk
n
2
c ≤ 0, the statement is trivially true. Let us therefore assume

that blogk
n
2
c ≥ 1, i.e. n ≥ 2k. Let m = bn

2
c and w = blogk mc. Since k is an

integer, w = blogk
n
2
c and hence kw ≤ n

2
.

Let A be a CA with k states solving the asynchronous multi-general FSSP.
We claim that the instance I with T = {(0, 0), (n − 1, 0)} has the required
property. We will write tf as an abbreviation for TA(I).

Denote by sj the list of w states Cj
n(j)Cj+1

n (j) · · ·Cj+w−1
n (j) in which a

cell j, 0 ≤ j < n/2, is in w subsequent steps starting at time j. Since A
has k states, there are only kw ≤ n/2 pairwise different lists sj . Therefore
the sequence s0, s1, . . . becomes periodic before there is any influence from the
rightmost general. Let d denote a multiple of the period length such that d ≥ w
and consider the instance I ′ of length n′ = n+d with T ′ = {(0, 0), (n−1+d, d)}.
It follows that sn−1 = sn′

−1.
Now assume by contradiction that tf = TA(I) < Tmin(I) + blogk

n
2
c =

Tmin(I)+w. This means that sn−1 contains a firing state at position tf−(n−1).
Therefore sn′

−1 contains a firing state, too. Since A is assumed to solve the
asynchronous multi-general FSSP, it must in fact fire for instance I ′ at time
tf +d. But tf +d < Tmin(I)+w+d = n−1+w+d ≤ n−1+d+d = n′−1+d.

Similar to the proof of Lemma 2 this means that in particular cell 0 fires at
a time when it cannot have been influenced by cell n′−1. Therefore increasing
the length of I ′ to tf + d + 2 (and keeping the same T ′) one gets an instance
I ′′ for which A would fail, because after tf + d steps cell 0 would again enter a
firing state but the rightmost cell would still be in state s. 2

It is now straightforward to finish this section:
Proof (of Theorem 5). It is known that even for the standard FSSP one needs at
least k ≥ 5 states [9]. For any w choose n = kw −1 and hence blogk nc = w−1.
But

n

2
=

1

2
(kw − 1) ≥

1

2
(kw − kw−1) =

1

2
(k − 1)kw−1 ≥ kw−1

and therefore blogk
n
2
c ≥ w − 1 = blogk nc. 2

3. A solution for the S-MG-FSSP

On the left side of Figure 2 an algorithm for the one-general case is depicted [16].
Compared to other solutions [8, 12] it has the advantage that any algorithm
for the standard FSSP can be “plugged into” the scheme.

Algorithm 7 The general sends signals to both borders with speed 1. Upon
arrival the border cells start a standard FSSP algorithm. The signals are re-
flected and meet at a point X of the space-time diagram (or at two cells at the
same time; this case can be handled with the usual techniques). The left bor-
der cell starts synchronizing the segment to the left of X, the right border cell
starts synchronizing the segment to the right of X, both using any algorithm
for the standard FSSP.

In general there will be a longer and a shorter segment, which can be distin-
guished depending on whether a reflected initiation signal passes the general

118

(c) 2004 IFIP

(point G in the space-time diagram) before meeting the other one at X or not.
While the synchronization of the longer segment ends at the optimum time
for the whole instance, synchronization for the shorter segment would end too
early. This problem is corrected by sending two signals to the shorter segment
with speed 1:

The first is initiated at point X in the space time and “freezes” the
synchronization algorithm.

The second is “thawing” it again. That signal is triggered when another
signal which is started at G and which runs with speed 1/2 arrives at X.

The area of the space-time diagram which is frozen is shown in gray in the
left part of Figure 2. A straightforward calculation yields, that as a result the
synchronization for the shorter segment will end at the same time as for the
longer segment.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

11

12

13

t

G
X

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

9

10

11

t

G
X

Figure 2. Synchronization using one and two generals at arbitrary positions.

An easy modification of this algorithm can be used for instances with two
generals. The cell where a reflected initiation signals marks point G is deter-
mined by the meeting point of the not-yet reflected initiation signals. The right
part of Figure 2 shows an example. From some time on the space-time diagram
coincides with the one resulting from the case with one general at cell G. 2

The transition from 2 generals to k generals can again be done in a generic
way. We will briefly sketch how this can be achieved.

In the S-MG-FSSP the optimum time is n − 1 + max{mini pi, n − 1 −
maxi pi}. This value is determined by the extremal positions pl = mini pi and
pr = maxi pi of generals, independently of the others. The following algorithm
exploits this fact and makes sure that each cell will work after a certain number
of steps as if only the outermost generals were present.

119

(c) 2004 IFIP

Algorithm 8 Assume that A = (S, δ) is a CA solving the FSSP for 2 generals
with the usual states s and g. For the new CA A′ = (S′, δ′) we write s’ and
g’ for its soldier and general state. It basically uses 3 registers Rl, Rr and
Rm. We will first describe the use of Rl. The use of Rr is analogous to Rl, but
preferring information from the opposite direction (right instead of left). At
last Rm will be explained.

Register Rl consists of a bit indicating the presence (*) or absence (-) of a
signal and a state x ∈ S. Initially (*, g) is induced here by state g’ of A′. Using
algorithm LeftChoice described below it is made sure that the state x ∈ S of
Rl of a cell always holds the state the corresponding cell of A would have as
long as that only has been influenced by the leftmost of those generals which
may have had an influence on it.

This can be realized by sending a signal from each general to the right with
speed 1. In the left part of Figure 3 the signals are indicated by stars *.
Depending on whether a cell observes a * signal arriving from its left neighbor
it can act appropriately: Whenever its left neighbor has a *, a cell behaves as if
itself and its right neighbor are in s; otherwise if a cell has * itself, it behaves as
if its right neighbor is in s. In the remaining cases the cell behaves “normally”.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

t

*

*

*

**
*

*

*

*

*
A BA B

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12

F
ED

A CB

F
ED

A CB

Figure 3. Left: Rl for preferring the left general. Right: Rm for choosing the
“currently outermost” generals.

The transition rule for Rl can be described by the following table:

left center right new center

(*, xl) ym yr (*, δ(xl, s, s))
(-, xl) (*, xm) yr (-, δ(xl, xm, s))
(-, xl) (-, xm) (?, xr) (-, δ(xl, xm, xr))

Analogous rules for preferring the right hand side are used for Rr.
It is now easy to use register Rm to simulate the behavior of the cells as it

would happen whenever the state in Rl is from the leftmost general and the
state in Rr is from the rightmost general: For Rl call a cell q in the neighborhood
of a cell p relevant for p, iff register Rl of cell q is really used (see the rule table
above); similarly for Rr. The new state of Rm of a cell p is computed from 3
states zp−1, zp and zp+1 each stemming from one of the registers of cells p− 1,
p and p + 1 respectively. For i ∈ {p − 1, p, p + 1} state zi is chosen as follows:

120

(c) 2004 IFIP

If i is relevant for both, Rl and Rr (of cell p), then zi is taken from register Rm

if cell i. If i is relevant for exactly one of Rl and Rr (of cell p), then zi is taken
from that register of cell i. Otherwise a quiescent state is used.

As a result of these rules one gets for example the situation depicted the right
part of Figure 3. Denote by A, B and C also the generals in the corresponding
parts of the space-time diagram. Then in part D of the diagram the Rm

registers of the cells “behave” as if there were only generals A and B and in
part E they behave as if there were only generals B and C. And in part F all
states of registers Rm are the same as for the case when there are only generals
A and C.

Thus an instance is fired after the same number of steps needed for the
simpler instance where all generals except the leftmost and rightmost one are
deleted, which is the optimum time (see the remark on the S-MG-FSSP right
before Theorem 4). 2

4. A solution for the A-MG-FSSP

We remind the reader of the CA An which were used in the proof of Lemma 3.
An is able to fire all instances of A-MG-FSSP of length m ≤ n in optimum
time.

Below we describe the main aspects of a CA which solves any instance I of
A-MG-FSSP in time Tmin(I) + log n. In the light of Theorem 5 this is “close
to optimal”. The idea is to generalize the An to a CA A∞ where there is
no upper bound for the counters. Of course unbounded contents of counters
cannot be stored in a single cell. Instead we use segments consisting of logb x
cells to represent a value x in b-adic representation. A well-known technique
introduced by Vollmar [14] and used in several contexts [5, 11] are counters
with the following properties:

The initial value of the counter is 0, stored as a single digit.

In each step the least-significant digit of the counter moves from one cell
to next one, the other digits are following.

In each step the content of the counter is incremented by 1 in such a
way that the sequence of counter digits passing a cell c forms the rep-
resentation of the distance of this cell from the one where the counter
started.

When incrementing a counter an overflow at the currently most-significant
digit may happen. In this case the length of the counter is increased by
1 at the end.

Analogously, given a counter with a value x > 0 it is possible to decrement
it in each cell while moving. But in this case the length of the counter is not
decreased (otherwise speed 1 would be impossible for the counters). Instead
zeroes at the most-significant positions are used. Such counters are used in the
following CA algorithm.

121

(c) 2004 IFIP

t

2 log kb

log kb

k

Figure 4. Solving instances of the multi-general FSSP with distributed counters.

Algorithm 9 Whenever a general “appears”, it sends a signal to the left and
one to the right. Whenever two such signals meet, they erase each other.
When a signal arrives at the left or right border, a counter as described above
is initialized with 0. The counters then move to the opposite sides with speed
1 and are incremented by 1 in each step.

Denote by X the cell where both counters meet. When they arrive at X
they are not incremented any longer. Instead their contents are compared digit
by digit. This is straightforward, since the least-significant digits arrive first
and the other follow step by step. Both counters are kept until it is known
which one stores the larger value. This one is used further on, the other one is
destroyed.

Let k denote the larger value and K the counter, i.e. the “data structure”,
storing it. When K arrives at X it starts cycling as follows:

K is reflected. Its digits move back until the least significant digit meets
the most significant one in cell Y , which is 1

2
log k cells away from X.

At Y the counter is reflected again, so that from then on all digits are
moving back and forth between X and Y .

After coming back to X for the first time, it is clear that K has stored the
larger value.

Now K is decremented in each step. And it is not only cycling, but copies
are sent to both sides starting at X. These copies are also decremented in each
step. In the upper part of Figure 4 the area where the copies of K are moving
is shaded gray. Solid diagonal lines mark the boundaries between two copies.

Additionally each cell checks whether all digits of a counter passing through
it are zero. This takes time log k. At some point in time simultaneously some
cells discover that this is the case. On both sides of X these cells are log k cells
apart, and their positions are symmetrical with respect to X. The leftmost
such cell is cell 0.

122

(c) 2004 IFIP

These cells start an algorithm for the 1-general FSSP (directed towards X)
synchronizing the segment up to the next such cell. This is indicated in the
lower part of Figure 4. As can be seen there, problems may arise in two areas:

At the rightmost cell there may be a segment of unsuitable length. It
would be nice if there were a few more cells at the right end as indicated by
the dotted lines. Even though the cells are missing, by “folding around”
that part of the space-time diagram their actions can easily be simulated
in additional registers of the present cells.

A similar trick can be used at X. The actions of the missing cells which
one would have to add to make the lengths of the adjacent segments equal
to that of other segments can be simulated in the registers used by the
cells between X and Y for the cycling counter.

From the discussion of the above algorithm one immediately gets:

Theorem 10 There is a CA which solves any instance I of length n of the
A-MG-FSSP in time Tmin(I) + logb n for some b ∈ N.

5. Summary and outlook

Two variants of the generalized FSSP with several generals have been consid-
ered for 1-dimensional CA. Using a few simple and elegant techniques, it is
possible to design a CA which solves the problem for all instances in optimum
time, when all generals start to act synchronously.

When the generals may start their work asynchronously, the optimum time
for an instance depends on the starting times, but it can still be computed
exactly. Contrary to the case of synchronous generals, there is no longer one CA
which can achieve optimum running time for all problem instances. However,
we have described a CA whose firing times are quite close to the optimum; it
needs only log n steps longer.

Of course, the problems can also be considered for CA working on 2- or
higher-dimensional grids. Even for the synchronous multi-general case the sit-
uation becomes considerably more complicated. For example the choice of the
neighborhood, e.g. Moore or von Neumann type, not only has an influence on
the value of the optimum synchronization times. While for one neighborhood a
CA always achieving optimum time is known, for the other neighborhood none
has been found until now. This will be discussed in a follow-up paper.

References

[1] K. Čulik and S. Dube. An efficient solution of the firing mob problem. Theoretical

Computer Science, 91:57–69, 1991.

[2] E. Goto. A minimum time solution of the Firing Squad Problem. Dittoed course
notes for Applied Mathematics 298, Harvard University, 1962.

[3] M. Hisaoka, H. Yamada, M. Maeda, Th. Worsch, and H. Umeo. A design of
firing squad synchronization algorithms for multi-general problems and their
implementations. Unpublished manuscript, 2003.

123

(c) 2004 IFIP

[4] K. Kobayashi. On the minimal firing time of the firing squad synchronization
problem for polyautomata networks. Theoretical Computer Science, 7:149–167,
1978.

[5] M. Kutrib and R. Vollmar. Minimal time synchronization in restricted defec-
tive cellular automata. Journal of Information Processing and Cybernetics, EIK
27:179–196, 1991.

[6] S. La Torre, M. Napoli, and M. Parente. Synchronization of a line of identical
processors at a given time. Fundamenta Informaticae, 34:103–128, 1998.

[7] J. Mazoyer. A six-state minimal time solution to the firing squad synchronization
problem. Theoretical Computer Science, 50:183–238, 1987.

[8] F. R. Moore and G. G. Langdon. A generalized firing squad problem. Information

and Control, 12:17–33, 1968.

[9] P. Sanders. Suchalgorithmen auf SIMD-Rechnern — Weitere Ergebnisse zu
Polyautomaten. Diploma thesis, Fakultät für Informatik, Universität Karlsruhe,
1993.

[10] H. Schmid. Synchronisationsprobleme für zelluläre Automaten mit mehreren
Generälen. Diploma thesis, Fakultät für Informatik, Universität Karlsruhe, 2003.

[11] M. Stratmann and Th. Worsch. Leader election in d-dimensional CA in time
diam · log(diam). Future Generation Computer Systems, 18(7):939–950, 2002.

[12] H. Szwerinski. Time optimal solution of the firing squad synchronization problem
for n-dimensional rectangles with the general at an arbitrary position. Theoretical

Computer Science, 19:305–320, 1982.

[13] H. Umeo. A simple design of time-optimum firing squad synchronization algo-
rithms with fault-tolerance. IEICE Transactions on Information and Systems,
E87-D:733–739, 2004.

[14] R. Vollmar. Yet another generalization of the firing squad problem. Technical
report, Technische Universität Braunschweig, Braunschweig, 1976.

[15] R. Vollmar. On two modified problems of synchronization in cellular automata.
Acta Cybernetica, 3:293–300, 1977.

[16] Th. Worsch. Algorithmen in Zellularautomaten. Course notes, Fakultät für
Informatik, Universität Karlsruhe, 2003.

124

(c) 2004 IFIP

	Select a link below
	Return to Main Menu
	Return to Previous View

