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Abstract In the STS-based mapping, we are requested to obtain the correctbpdebes
in a DNA sequence from a given set of fragments or equivalently &digation
matrix A. It is well-known that the problem is formulated as the combinatorial
problem of obtaining a permutation gf's columns so that the resulting matrix
has the consecutive-one property. If the data (the hybridization méréetyor
free and includes enough information, then the above column ordendeés
the correct order of the probes uniquely. Unfortunately this is no lotrgerif
the data include errors, which has been one of the popular reseageltstar
computational biology. Even if there is no error, ambiguities in the proteror
may still remain. This in fact happens by the lack of some information of the
data, but almost no further investigation was made previously. In thisrpae
define a measure of such imperfectness of the data as a minimum aafount
additional fragments which are needed to fix the probe order uniquebersl
polynomial-time algorithms to compute such additional fragments of minimum
cost are presented.

Keywords:  DNA, hybridization, probe, fragment and PQ-tree

1. Introduction

The STS-based mapping is one of the most popular techniques for ghysica
mapping of DNA sequences. In this procedure, a DNA sequéhisecloned
into many copies and then they are cut into smaller, overlapped subsegquenc
calledfragments. An STS (sequence-tagged site), also callgdabe, is used
as a marker; each probe is supposed to appear at a unique positionritirthe e
DNA sequenceS. Now we are given dybridization matrix, an H-matrix in
short,A = (a;;) such that;; = 1 if probep; exists in fragmeny; anda;; = 0
otherwise. Our goal is to compute the order of proBeqp;,...,p,} in the
original DNA sequence from the given H-matrixA. It is well-known that
this can be formulated as the following combinatorial problem: Given an H-
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matrix, obtain a permutation of the columns so that the resulting matrix has the
so-calledconsecutive-one property, i.e., all 1s are consecutive in each row of
the matrix.

The problem can be solved in linear time by using the famous data stracture
calledPQ-trees [12]. Unfortunately, there are several kinds of errors involved
in experiments, which makes the data, H-matrices in our case, imperfect. Typ-
ical errors include the case that (i) an entry of the H-matrix changes érom
to 1, and vice versa, and that (ii) two fragments which are not consedutiv
the DNA sequence put together into a “chimeric” fragment [3, 4, 6-9thén
presence of such noises, we cannot use PQ-trees any longerpbhenpmow
becomes several optimization problems due to different assumptions afnoise
Not surprizingly, they are NP-hard in most cases [3, 7, 9, 11].

Even if there are no such errors, there may still remain ambiguities in the
probe order. See for example Fig. 1 (a), which illustrates an example of an
H-matrix consisting of six fragments (rowg) to fs, and ten probes (columns)

A to J. By exchanging columns, the matrix can be transformed into the ma-
trix in Fig. 1 (b) which satisfies the consecutive-one property, (i.e., eagh

has a single block of consecutive ones). One can see however trattiee
several other orders of the columns, say EGBFIADHC, which also eelie
consecutive-one property. Thus we cannot fix the order of prab@giely
from the requirement of the consecutive-one property in the case oHthis
matrix, which is obviously due to the imperfectness of the data. There is a
few literature which mentions the existence of this fact, e.g., [2], but nodurth
investigation was made previously.

Our contribution . In this paper, we propose a measure of such imperfect-
ness in H-matrices. Recall that the imperfectness is due to the lack of infor-
mation. For example, if we add two extra fragments to the H-matrix of Fig.
1 (a) as in Fig. 1 (c), then the order of probes is now determined unigsely a
shown in Fig. 1 (d). Thus the amount of additional fragments being needed
uniguely fix the probe order looks closely related to the degree of the imper-
fectness. It is apparently convenient to know this quantity for conduttieg
STS-based physical mapping.

More formally we consider the following problem: For a given H-matrix,
obtain the minimum amount of additional fragments such that there is only
one order of columns for the augmented H-matrix to have the consecuig#/e-o
property. Here are some issues which should be taken into consider@tion:
The minimum amount of fragments differs according to the order of probes to
be selected as a unique one among possible different orders. Forlexarap
needed two additional fragments in Fig. 1 (d), but three additional fratggmen
are needed to fix the column order as BGEAIDHCFJ. (ii) There are diiter
measures for the “amount” of fragments, such as the number of fragnmehts a
the total length of them.
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Our main result is to give polynomial-time algorithms which compute (1)
for a given H-matrix having the consecutive-one property, the minimum num-
ber of additional fragments which are enough to fix the probe order to the
current order (i.e., the order of the columns in the given H-matrix), (2) the
minimum total length of additional fragments under the same setting, (3) for
a given H-matrix not necessary having the consecutive-one propestynin-
imum number of additional fragments enough to fix the probe order uniquely
(but the order itself may be arbitrary) so that the augmented H-matrix has the
consecutive-one property, (4) the minimum total length of additional fraggne
under the same setting. We also mention a computer simulation using genes of
human chromosome 20.

Related Work. As mentioned previously, if the data are perfect, then the
problem can be solved in linear time by using PQ-trees [12]. Severabibss
ties of errors have been investigated including obtaining a sub-matrix have th
consecutive-one property [1], obtaining most-likely probe orders imths-
ence of false position and false negative hybridization errors usindeaetit
data structure [7], using the LP-relaxation for optimizing the most-likely probe
order [6], and exploiting the fact that each probe occurs at a unigsitign
in a more sophisticated way to handle errors such as chimeric fragments [3].
Also see [4, 8-11] for other related work including parallelization of the co
struction of PQ-trees [5].

2. PQ-trees

PQ-trees are a convenient data structure for our problem. Fig. 3 shows an
example of a PQ-tree. A PQ-trée consists ofP-nodes denoted by circles,
Q-nodes denoted by rectangles, atehf-nodes. P(7") denotes a set of permu-
tations of leaf-nodes that is defined by the following rules: (i) Children of a
P-node may be arbitrarily permuted. (ii) Children of a Q-node must be cense
utive but may be arranged in reverse order. For exampl&plbe the PQ-tree
in Fig. 3. ThenP(Ty)={BGEJAIDHCJF, EGBJIADHCF,...}. Two
PQ-treed” and7” are said to be equivalent#(T") = P(T").

There is a linear-time algorithm [12] which constructs a PQ-frdeom H-
matrix A such that (i)I”’s leaf-nodes correspond to columns_éfand (i) A
has the consecutive-one propertyffs columns are rearranged into an order
in P(T). (If A cannot be rearranged into any matrix having the consecutive-
one property, then the algorithm can detect itdlis an H-matrix, this does not
happen unlesd includes errors. Although details are omitted, the algorithm
constructs a target PQ-tree by transforming PQ-trees step-by-stgipjnige
with a PQ-tree of a single P-node. In each step, a row of the H-matrix is
selected and the PQ-tree changes so that the constraint by that ronets add
For example, from the H-matrix in Fig 1(a), we can construct the associated
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pr obes probes
ABCDEFGHI J BGEJAI DHCEF
fr1100100 0010 f1 0000111 000
f21010000 1000 f2 1100000 000
f3/000010 1000 f3 0110000 000
f41000001 0000 f4 0000000 001
f5 1001100 0100 f5 0000001 110
f6 /]000O00O0 O0O0O0°1 f6 0001000 000
(a (b)
pr obes pr obes
ABCDEFGHI J BGEJAI DHCEFE
f1 100100 0O010]| f21 00001111 000
f2 010000 100O0O0]| f2 1100000 000
f3 000010 1000, f3 0110000 000
f4 0000011 O0O0O0TCO0O| f4 000O0O0OCO0C O0O01
f5 001100 0100 f5 0 000O0O0T11 110
f6 000000 OOTO0T1S f6 0001000 O0°0O0OQ
f7 100110 011 1] f7 0011111 100
f8 001101 0110J) f8 0000011 111
(c) (d)

Figurel. Permuting the (0,1)-matrix gotten by the experiment

PQ-tree as shown in Fig. 2 by selecting royiisthrough fs in each step.
Note that the final PQ-tree is the sameTasin Fig. 3 andP (7)) includes
several different orders as mentioned before. For example, BGEIBF in
P(Ty) corresponds to the H-matrix in Fig. 2 (b) which has the consecutive-one
property.

If we add two new rows (fragmentg) and fs as in Fig. 2 (c), then the
PQ-tree is furthermore changed as in Fig. 4 and the final PQ-tree coofsists
a single Q-node (Such a PQ-tree is called@tree.) This means that the
probe order is fixed uniquely (without its reverse order) by adding terae
fragments, which is exactly what we wanted to do. Thus our problem can be
restated as follows.

Problem FIX(T,o): For a given PQ-tre& (made from H-matrix by the
algorithm of [12] ) and a probe order (leaf ordet)obtain a set of additional
fragments of a minimum cost such tHAtwill change into a 1Q-tree of leaf
ordero.

If o is not given then the problem is denoted 5y X (7', —) which requires
to obtain a minimum fragments to charifjento some 1Q-tree. As the cost of
a fragment set, we consider mainly two different definitions. One is the §ize o
fragment set, i.e., the number of fragments. The other is the sum of the lengths
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Figure2. The process to make the input PQ-tree
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Figure3. After adding fragment 5 (1)
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(c)

Figure4. Making a 1Q-tree
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the additional fragment the additional fr fragments
Figure5. The number of fragment=1 Figure6. The number of fragment=2
the total length=5 the total length=4
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of the fragments, where the length of a fragment is the number of 1s included
in the corresponding row of the H-matrix. Those two measures sometimes
conflict: As a simple example, the PQ-tree in Fig. 5 needs one fragment of
length five (i.e., the fragment including probes H, I, J, K and L) for the §jxin
operation. The same fixing operation is also possible by using two fragments
of total length four as shown in Fig. 6.

3. Minimizing the number of additional fragments

In this section, we first discuss minimizing the number of additional frag-
ments forF' I X (T, o) (i.e., the probe order is to be fixeddavhich is explicitly
given) and then foF' I X (T', —) (to be fixed to an arbitrary order).

FIX(T,o)

Suppose that the PQ-tree is given so that the leaves are arrangediidehe o
o = pip2...pn Of lengthn. Then we consider + 1 differentpositions, de-
noted by(—, p1), (p1,p2), - -, (Pn—1,Pn), and(pn, —). Thus a position means
a “between” of two consecutive probes or the left (rightpef(p,). A posi-
tion denoted by(p;, p;+1) is called annside position,(—, p;) and(p,, —) an
outside position. See Fig. 4 again. An additional fragment should have a con-
secutive sequence of probes, EJAIDH for example for the firstchidgment
in Fig. 4, which can be designated by giving two positionddiisend-position
andright end-position ((G,E) and (H,C)) in the example). We sometimes say
that a fragment iserminated by its (left and/or right) end-positions.

In Fig. 4, we selected two positions (G,E) and (H,C) to terminate the first
additional fragment. As one can see later, this selection of (G,E) and (H,C)
contributes to converting the PQ-tree into the final 1Q-tree efficiently. Thus
among all positions, there are some “important” positions for our purpose. W
call such positions “edges,” since using these important positions as etige
additional fragments plays a great role in minimizing the number of additional
fragments.Edges are divided into three types and defined as follows: A po-
sition (x, ) is called (i) anlnside-P-type edge if probesxz andy are children
of a single P-node, (ii) a®utside-P-type edge if probe z (or y) is — and it
is a child of the root P-node, (iii) &-type edge if both = andy belong to a
single Q-node which is not a root Q-node and which includes only ledésio
In Fig. 4 for example, (A,l) is Inside-P-type, (F,-) is Outside-P-type @)
is Q-type. It should be noted that if we select two edges appropriately-to ter
minate an additional fragment, like (G,E) and (H,C) in Fig. 4 then those two
edges “disappear” in the transformed PQ-tree. ((G,E) or any othep&elyge
for the Q-node BGE. By definition, (B,G) is also a Q-type edge for the same
Q-node. As described later, we only need one Q-type edge for a @fapthe
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fixing operation.) Thus the key point is how to select such appropriatesedg
for additional fragments.

LEMMA 1 APQ-treeincludes no edgeif and only if it isa 1Q-tree.

Proof. If a PQ-tree has two internal nodes, there is at least one edge by the
definition. If a PQ-tree has only one internal node and if it is a P-node, it
includes at least one P-type edge from the definition. O

LEMMA 2 For any solution of FIX (T, o), every edge must be selected at
least once to terminate additional fragments.

Proof. Itis proved by examing all templates for transformation of PQ-trees in
each step defined in [12]. U

In Fig. 4, the first additional fragment is terminated by edges (G,E) and
(H,C). After adding this fragment, edges 1 and 2 disappear. Howewer, w
cannot say that every edge always disappears when a fragmentaterthby
the edge is added. For example, if the first additional fragment is termingted b
(A,l) and (H,C), two Inside-P-type edges seem to disappear. Honmsesuse
(A,D, (1,D), (D,H) and (H,C) become Q-type edges, the number of edgpéch
are disappeared by this additional fragment is actually only one. In Fig. 4,
edges 1 and 2 have another edge, edge 3, between them. In fact, geth ed
always disappear in such a case as shown in the following lemma.

LEMMA 3 Suppose that a PQ-tree 17 has two edges e; and eo, and 77 is
transformed into 75 by adding the fragment terminated by e; and es. Then (i)
at least one of e; and e, disappearsin T and (ii) if thereis another edge, say
e3, between e; and e,, then both e; and e disappear in 75 (iii) Furthermore
no new edges are created.

Proof. Let v be the lowest common ancestor @f ande;. Let v; be the
internal node which is an ancestoreafand a child ofv. Letv, be the internal
node which is an ancestor ef and a child ofv. Leti; be the leftest probe
included in the subtree whose rootiis Let !/, be the rightest probe included
in the subtree whose rootis. (See Fig. 7)

Assume that a fragment terminateddyyande, is added and at most one of
the two edges disappear. In this case, there are the following two cdges on
= Whenv is a P-node and there is not another edge except, fandes in

the position set betwedpandi,.,

= Whenv is a Q-node and there is not another edge except;fandes
in the positions included by the subtree whose roet is
Our method avoids these cases. Hence (i) and (ii) are shown. Projiigrty (
can be proved by examining all templates for transformation of PQ-trees in
each step defined in [12]. O
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ﬁv\
VIO Ovr
|, € €2 |,
fragment

Figure7. An additional fragment terminated ey ande;

Figure8. A PQ-tree in whichf 41 additional

Figure9. One step before the 1Q-tree
fragments are necessary

By using Lemma 3, we can remove two edges by adding one fragment,
and thus we can show that the number of necessary additional fragraeats f
fixing operation is about a half of the number of edges. Note that, there must
be at least three edges in order to apply lemma 3. In fact, there exists a case
that there are only two edges, and two fragments are needed. As theofesu
this, there exists a PQ-tree that hasdges and§ | + 1 additional fragments
are needed. The PQ-tree in Fig. 8 is an example of it. It becomes the PQ-tree
of Fig. 9 after addingd § | fragments terminated by two.

In other words, when the number of edges is even, there are two cases,
i.e., the minimum numbers of additional fragments arand$ + 1. We can
distinguish them by using a simple characterization as the following theorem.

THEOREM 4 Let e be the number of edges and n be the number of probes of
(T, o). The minimum number of additional fragmentsfor F'1 X (T, o) isshown
asfollows:

1 Wheneisodd: <.

2 When e iseven:

2-1. When theroot node is a Q-node and there is only oneinternal child

node of theroot: § + 1.

2-2. Otherwise: §.
Moreover, a fragment set with the minimum number of additional fragments

for FIX (T, o) can befound in O(n?) time.
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For proving the theorem, we introduce the following lemma.

LEMMA 5 Consider a PQ-tree (T, o) that includes at least three edges and
doesn’t satisfy the condition of 2-1in Theorem 1. There exists a fragment satis-
fying the condition of Lemma 3 (ii) such that the resultant PQ-tree (7", o) also
doesn’'t satisfy the condition of 2-1 in Theorem 1 after adding the fragment.

Proof of Theorem 1.
» Whene is odd:

From Lemma 3 (ii), two edges can be decreased by adding one fragment
if e > 3. Hence, by iterating this process, only one edge remains after
adding% fragments. A PQ-tree including only one edge must satisfy
all of the following three conditions:

— Theroot is a Q-node.
— Every internal node has at most one internal child node.

— The lowest internal node (the internal node which doesn’t have an
internal child node.) is a Q-node.

It becomes a 1Q-tree by adding a fragment.
= Whene is even:

By using the same discussion with the odd case above, a PQ-tree includ-
ing only two edges can be obtained by adding- 1 fragments. From
Lemma 4, if the original PQ-tree doesn't satisfy the condition of 2-1,
then the resultant PQ-tree doesn'’t also. Hence, it is enough to consider
the case that = 2. It can be easily proved by examing all cases.

Because we consider only the given order of probes, ther&®né) frag-
ments. A transformation by each additional fragment can be dor&(ir)
time. O

FIX(T,—)

The result of Theorem 1 can be used to saREX (T, —) also. That is,
FIX(T,—) can be solved by finding a leaf orderin which the number of
edges is minimum. The following Lemma 6 shows how to find sticin the
lemma,v and! mean the number of internal child nodes and the number of
child probes, respectively, of the noticed P-node.

LEMMA 6 Let a1 be the number of Q-nodes which don’t have internal child
nodes. Let ay be the total number of maxz{|l| — |v| — 1,0} for all P-nodes
which are not theroot. Let a3 be maz{|l| — |v| 4+ 1,0} if theroot is a P-node,
or 0 otherwise. The minimum number of edgesfor FIX (T, —) iSa; +as+as.
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It can be proved by definitions of edges. See an example of Fig. 3. If
probe F is moved to the space between BGE and AIDHC, the number of edges
decreases by one and it is the PQ-tree yielding the minimum solution three.

THEOREM 7 In FIX(T,—), a fragment set, in which the number of addi-
tional fragmentsis minimum, can be found in O(n?) time, where n is the num-
ber of probes.

Proof. Itis clear from Lemma 3 and 6, and Theorem 1. O

4. Minimizing the total length of additional fragments

In this section, we pay attention another cost function, i.e., minimizing the
total length of additional fragments.

FIX(T,o)

As shown in Fig.s 5 and 6, the smallness for the number of additional frag-
ments and the shortness for the total length of additional fragments may con-
flict each other. For a fixing operation, for every edge, there must least
one fragment terminated by the edges. However, there is a case thahwe ca
shorten the total length by using a fragment which is terminated by two non-
edge positions. The fragment which consists of KL shown in Fig. 6 is an
example of this. As shown in this example, “edge” is a concept related to the
number of fragments, and there is scarcely any relation between edfjgsan
total lengths of fragments.

We propose an algorithm, which scans from the leaves to the root and base
on a dynamic programming, for this problem. We explain the basic ideas by
using simple examples. Before the explanation, we introduce some notations
as follows. A fragmentovers position (4, j) if the fragment includes both
andj. A setF of fragmentscovers a setP of consecutive probes if for each
neighbor probes, j € P, F has a fragment that covers positianj). If a set
F of fragments doesn’t cover a set P of consecutive probes, thea ihet
least one “cut” defined as follows. éut of F for P is a position(, j) such that
i,j € F and the position is not covered by any fragment in F.

We consider a PQ-tree shown in Fig. 10 (c). It consists of only one P-
node and leaves. The lengths of fragments2ai:3,3,...,3,3,3,2. The
numbers of 1s assigned to each probeslael,2,...,2,1,2,1. Note that
the set of fragments covers the set of all probes. If additional fragsetn
doesn’t cover the set of all probes as Fig. 10 (d), the fixing operatiort
be completed. However, if this is a subtree of the given PQ-tree, althoegh th
additional fragment set doesn't cover the set of all probes, thereasathat
the fixing operation can be completed. In many cases, it causes to saviathe to
length of additional fragments. In other words, a naive procedure asi¢o
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probesBGE Al DHCF
DNA [ ATGCCATGCCAATTGECCATGC ]

% fragnment1
fragnent 2
fragnment 3
fragnent 4

(a) The fragment set covers all

probessBGE Al DHCF

DNA [ ATGCCATGCCAATTGROCATEC ]

@fraqm&ntl

fragment 2

HCFy ragment 3

(b) The fragnment set doesn't cover

probes by a path al I%

fl?z 3
f3 \:ls 3
———— 3

) 3
fng———

f

I:Iz
1212121212121

(c) with no cut

l:lI:_z"'l

(e) the total length = 12
Vl
V2
ABCDEFGHI
(g) the total length = 10

\

(i) before the repl acenment

=2
|:|32
———

12121213012121

(d) with a cut

ABCDE FGHI

(f) the totalvlength =11

a1

\ 2

(h) the fragment assignment
of L-type

V
b=8 b=2
| =9 | =1
r =9 r =3
(j) after the replacenent

Figure10. minimizing the total length of additional fragments
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find the optimal solution in each subtree and to build them up from leaves to
the root simply may not to obtain an optimal solution.

For example, if the cut is moved to F as Fig. 10 (f), the total length increases
from 10 to 11.

For example, the additional fragment set shown in Fig. 10 (g) doesvetrco
all probes by a path in the subtree whose roatkis However, the subtree is
also fixed by assigning fragments to A and | which are next to the subtiae as
the figure. Here, we pay attention only to the subtrgéhe subtree rooted by
v9) Of Figures 10 (e)—(g). If additional fragments on the subtree arengas
Fig. 10 (g), order of BCDE, E, and FGH cannot be fixed yet. Thugnfrents
A and I, which are neighbors of the subtree, must be covered by fratgme

Hence, let us say that the pair of such subtree and such fragmemtragesig
is B-type (B means “both sides”.The precise definition will be done later).
Moreover, if the fragment assignment on the subtrgare given as Fig. 10
(h), we have to assign a fragment to B which is the left neighbor of the subtre
Hence, let us say that the pair of such subtree and such fragmentrassigs
L-type. R-type is defined symmetrically. More precisely, they are defised a
follows: (Note that a pair of a subtree and a fragment assignment carnobe tw
or three types at atime. )

m  R-type A pair of a subtree and a fragment assignment, such that if there
is 1 at the right neighbor probe of the subtree, the subtree can be trans-
formed into 1Q-tree and connected to the right side.

= L-type A pair of a subtree and a fragment assignment, such that if there
is 1 at the left neighbor probe of the subtree, the subtree can be trans-
formed into 1Q-tree and connected to the left side.

= B-type A pair of a subtree and a fragment assignment, such that if there
are 1s at the both neighbor probes of the subtree, the subtree can be
transformed into 1Q-tree and connected to the both sides.

The minimum value of the total length of feasible fragment assignments
for each of the three types can be calculated in polynomial time, since if the
cut is fixed, then the minimum value can be obtained easily. By memorizing
the minimum values of the total length of additional fragments for each of the
three types for every subtree, we can also calculate the minimum values of
them for the upper subtrees. Now, we establish an algorithm, which examines
all candidates of the cut and finds the optimal fragment assignments in the
three types for every sub-tree, in order to find the minimum fragment sle¢ of
whole PQ-tree.

The following example explains the algorithm more in detail. Fig. 10 (i) can
be replaced with Fig. 10 (j) by calculating the optimal fragment assignments
for the three types for every subtree exceptfoketd, [ andr be the minimum
values for the total lengths of the additional fragment sets of B-type, &-@yqal
R-type, respectively.
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By using the algorithm, we obtain the following theorem.

THEOREM 8 A fragment set with minimum total length for FIX (T, o) can
be found in O(n?) time, where n isthe number of probes.

Proof. We omit the proof for that the algorithm can construct the minimum
fragment set correctly. The proof for the computational time is as follows. L
d; be the degrees for each internal nodgsSince, the computational time for
each internal node is at moStd,?), the whole computational time is at most
> 0(d;?) = O(n?). O

FIX(T,-)

In FIX(T,—), since there is no distinction between L-type and R-type,
they are called.R-type. Let ir be the smaller one dfandr. Although, in
FIX(T,o) acutis scanned from left to right, iR/ X (T, —) a cut is fixed.
However, the algorithm has to examine all candidates of nodes for both adja
cent sides of the cut and the leftest node and the rightest node of ttreesub
For the other nodes, the B-type assignment in which the total length of frag-
ments is less than any other B-type assignment is used. Since the position of
the cut and whether there is a cut or not are assumed in advance, ththaigor
is not allowed to make a new cut by assigning fragments to nodes. Howfever,
the B-type assignment is replaced by another assignment which is noeB-typ
a new cut is created.

Leaves and internal nodes should be ordered alternately as farsiblpos
Although the algorithm has to examine more cases, the order of the computa-
tion time doesn’t become large.

THEOREM 9 A fragment set with minimum total length for F1X (T, —) can
be found in O(n®) time, where n isthe number of probes.

5. Concluding Remarks

For the problem for fixing the probe order of a given PQ-tree, we sdow
two polynomial time algorithms. One of them minimizes the number of addi-
tional fragments. The other minimizes the total length of additional fragments.
We solved not only the problems to fix probes as a given order, but adso th
problems to find the best order of the probes. For treating the formefurst
tion, we introduced an idea of “edges”. We showed the minimum number of
additional fragments argf | or [§] + 1, wheree is the number of edges.

For practical use, it may be difficult to make additional fragments which
we want. However, if fragments are concentrated to the part wheresedge
exist densely, the probability that fragments which our algorithm wants are
generated becomes high. In other words, the probability that edgepédaap
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becomes high and fixing operations are accelerated. Some results of com-
puter experiments for this method are appeared on our web page adtress
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http://www.lab2.kuis.kyoto-u.ac.jptamura/tcs2004.html.
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