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Abstract We introduce a new synchronization problem in mobile ad-hoc systems: the
Driving Philosophers. In this problem, an unbounded number of driving philoso-
phers (processes) access a round-about (set of shared resources organized along
a logical ring). The crux of the problem is to ensure, beside traditional mutual
exclusion and starvation freedom at each particular resource, gridlock freedom
(i.e., a cyclic waiting chain among processes). The problem captures explicitly
the very notion of process mobility and the underlying model does not involve
any assumption on the total number of (participating) processes or the use of
shared memory, i.e., the model conveys the ad-hoc environment. We present a
generic algorithm that solves the problem in a synchronous model. Instances of
this algorithm can be fair but not concurrent, or concurrent but not fair. We de-
rive the impossibility of achieving fairness and concurrency at the same time as
well as the impossibility of solving the problem in an asynchronous model. We
also conjecture the impossibility of solving the problem in an ad-hoc network
model with limited-range communication.
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Introduction

Whilst 98% of the computers in the world are embedded devices, most research on
synchronization is done with the 2% left in mind [7]. One possible reason might be
the lack of precisely defined problems for the former case.

In 1971, Dijkstra introduced an intricate synchronization paradigm, the Dining
Philosophers problem [6]. The problem crystallizes the difficulty of accessing shared
resources, by posing orthogonal constraints, in terms of mutual exclusion, starvation-
freedom, and deadlock-freedom. In Dijkstra’s problem, the number of processes (i.e.,
philosophers) is known, as well as the arrangement of processes. Hence the pairs
of processes in which conflicts may appear are known. Variants of this problem, in
particular the Drinking Philosophers [5], traditionally make the same assumptions.

The motivation behind the Driving Philosophers is to define a problem that crystal-
lizes the difficulty of accessing shared resources amongst mobile processes that com-
municate through ad-hoc networks. The Driving Philosophers problem was inspired
by the practical issue of synchronizing cars in a round-about. Like in the Dining
Philosophers, asynchronous processes compete on a set of resources. Unlike in the
Dining Philosophers however, the processes do so (a) without a priori knowing the
number of participating processes, how many resources they might require, nor how
many are available, (b) following a specific order amongst the resources that the pro-
cesses request (i.e., the resources model the portions of the road in the round-about; the
processes are in this sense mobile), and (c) in a system model with no shared memory
or any communication medium which would make it possible to reach all processes in
the system (ad-hoc network).

In this paper we first precisely define the Driving Philosophers problem. We then
give a generic canvas to solve the problem. By instantiating the generic canvas with a
set of predicates, we present different modular solutions to the Driving Philosophers in
a synchronous model. Synchrony assumptions can be met in practice assuming a typi-
cal wireless network, and processes equipped with local GPS receivers. The genericity
of our approach allows for investigating several algorithmic flavors. In particular, we
introduce the notions of concurrent and fair algorithms. Roughly speaking, a con-
current algorithm is one that does not deny concurrent accesses to distinct resources,
whereas a fair algorithm grants requests following the arrival time. In a precise sense,
we show that concurrency and fairness are two antagonistic notions.

We also show that even if no failure is allowed, the Driving Philosophers problem is
impossible without assumptions on communication delays and process relative com-
putation speeds (asynchronous model), or specific assumptions on space or arrival rate
of participating processes. We also conjecture the impossibility of solving the Driving
Philosophers in a synchronous model in which communication is local, i.e., a model in
which processes may communicate only using a restricted communication range. We
give a proof of this conjecture in a restricted case, and leave the generalization open.

The rest of the paper is organized as follows: In Section 1, we first introduce some
basic terminology, then the Driving Philosophers specification. In Section 2, we give
our generic canvas solving the Driving Philosophers in a synchronous model. We in-
stantiate our canvas with three different sets of predicates, and introduce our notion of
concurrency. In Section 3, we introduce our notion of fairness, and give a new algo-
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rithm that complies with this notion. We prove then that concurrency and fairness are
antagonistic. In Section 4, we prove the impossibility of solving the Driving Philoso-
phers in the asynchronous model, and we conjecture the impossibility of solving the
problem in a model with only limited-range communication. We prove this conjec-
ture in a restricted case. In Section 5, we discuss possible variants of our problem,
and present some related works. For space limitations, we postpone all proofs to a
companion technical report [2].

1 The Driving Philosophers

Definitions

Processes. We consider a set of processes (philosophers)
���������
	��
��	��������

. No
process is a priori required to take part in the Driving Philosophers problem. More
precisely, we consider that the processes take part to the problem in an uncoordinated
manner (i.e, a process may be leaving the problem while another process simultane-
ously joins the problem). We denote by participating processes the set of processes
which take part in the problem at a specific point in time. Note that the set of partici-
pating processes typically changes over time, e.g., when new processes take part in the
problem. Every process has a unique identity. Processes communicate by message-
passing using the primitives send and receive. The primitive send allows a process
to send a message to the current participating processes, whereas the primitive re-
ceive allows a process to receive a message sent to it, that it has not yet received.
Communication is reliable in the following sense: (validity) if a correct process sends
a message to a correct process, the message is eventually received, (no duplication)
each message is received at most once, and (integrity) the network does not create nor
corrupt messages.

Resources. We consider a set of � resources � ����� � 	�� � 	�������	������ � � . Resources
are organized in our case along a ring:

����� �
follows

���
, where � �"! (resp. � #"! )

is defined as $��&%"!(' mod � (resp. $��*)+!(' mod � ). Processes ignore the number
of resources. Access to any resource may only take place within a critical section of
code [6]. Before and after executing the critical section of code, any process executes
two other fragments of code, respectively the entry and exit sections. Our problem is
to design entry and exit sections, in order to adequately schedule the accesses to re-
sources. A process is mobile in the sense it may request and access different resources
at different times. We consider that the entry (resp. exit) section for resource

�-,
is

invoked by process
� �

using the primitive entry $�. 	0/ ' (resp. exit $1. 	�/ ' ). When a process
invokes a procedure for an entry or exit section, this process blocks until the procedure
returns. We say that a resource

� ,
is requested by

�2�
upon the invocation of entry $1. 	0/ ' ,

granted to
�2�

upon returning from entry $1. 	�/ ' , and released by
�
�

upon the invocation
of exit $1. 	0/ ' . We say that a process

���
owns a resource

�(3
at time 4 if there exists an

invocation entry $1. 	�/ ' which returns before time 4 , such that no invocation exit $�. 	0/ '
occurs between the invocation of entry $1. 	�/ ' and time 4 . Note that a process may own
a resource for a finite but arbitrarily long period of time before releasing it (i.e., it is
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a “philosopher” in the sense that it may “think” for arbitrarily long).1 We say that a
process

� �
is new, if

�2�
does not own any resource prior to invoking entry $1. 	�/ ' , for

some resource
� ,

. At any point in time, at most one new process
�
�

may be requesting
a resource

� ,
. The interaction between a process and its entry and exit sections are

illustrated in Figure 1.

Problem
The Driving Philosophers problem is defined for a set of processes and a set of

resources. Informally, any process which takes part in the problem has to access an
ordered sequence of resources, starting from any resource, such that any resource is
accessed by at most a single process at any time. Formally, an algorithm solves the
Driving Philosophers problem if, for each of its execution, the following properties
hold:2

(P1) (Mutual exclusion) No two processes own the same resource at the same time.
(P2) (No starvation) Any requested resource is eventually granted.

Processes are assumed to well behave in the sense that they respect the following
conditions.

(B1) A process may request a resource
� ,

only if it (i) owns
� ,

�
�

or (ii) does not own
any resource.

(B2) After releasing every resource it owns, no process ever requests a resource.
(B3) If any process obtains every resource it requests, it eventually releases any re-

source it owns.

Property B1 defines the ordering relation among resources. Property B2 denotes
the fact that a process may only take part in the problem at most once. Property B3
ensures that every process eventually releases every resource it owns.

We note that a traditional mutual exclusion algorithm, used to access each resource
separately, will ensure properties P1, but may fail to ensure P2. The problem that may
arise is gridlock, i.e., a situation in which (1) every resource is owned by a process,
(2) every process would like to acquire the next resource, and (3) no process releases
its current resource (i.e., no process desires to leave the round-about). We explain the
gridlock problem in more details in the next paragraph.

Driving versus Dining Philosophers
Our problem differs in several aspects from the Dining Philosophers. Due to the

mobility assumption, every process in the Driving case competes for different re-
sources at different times. This fundamentally differs from the Dining case, in which
each process repeatedly competes for a single critical section. The processes request
resources following a specific order in the Driving case.

1Note that this is different from the speed of the cars, on which we make no assumption.
2Following [1, 14], our problem specification is broken into safety and liveness properties, as well as well-
behaviorness of processes.
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Driving Philosophers Algorithm

Mobile Ad−Hoc Network Communication

send receive.........

exit(i,s)

Application

entry(i,s)

PSfrag replacements

Process
� �

Figure 1. Component layout at process ���

The major impact of considering mobile processes is the possibility of gridlock.
Interestingly this case cannot occur in the Dining case because accessing a critical
section first necessitates to acquire both adjacent tokens, which prevents two adjacent
processes to access their critical section simultaneously. On the other hand, in the
Dining case, processes may deadlock, if every process has acquired the left token and
is waiting on the right one to be released. There is no such risk of a deadlock in the
Driving case, because two simultaneous accesses to two adjacent resources are not
directly conflicting.

In other words, the main difference between the Driving Philosophers problem and
the Dining Philosophers lies in the fact that conflicts are not always between the same
processes in the Driving case (processes are mobile). One may see the Dining Philoso-
phers as resource-driven (resources are “applied” on a set of processes), whereas the
Driving Philosophers is process-driven (processes are “applied” on a set of resources).

2 A Generic Algorithm
A generic algorithm solving the Driving Philosophers problem is presented in this

section. We design this algorithm with the analogy between the Driving Philosophers
and a round-about in mind, as shown in Figure 2. In this sense we assume that any pro-
cess

� �
which takes part in the problem invokes the entry and exit section procedures

in such a way that
� �

releases resource
��,

, i.e., invokes exit $1. 	0/ ' before requesting��, ���
(if
� �

ever requests
��, ���

). In this way, any process holds at most two resources
at a time. This is an assumption on process well behavior, which could be described
together with properties B1, B2 and B3. As such, the algorithm presented in Figure 3
solves a constrained variant of the Driving Philosophers problem.

System Model. We consider a synchronous model,3 where there exists a known
bound on (i) the time it takes for a process to execute a step, and (ii) on the message
propagation delay. Computation proceeds in a round-based manner, i.e., processes
interact in a synchronous, round-based computational way [14].4 Roughly speak-
ing, in each synchronous round, every process goes through three phases: in the first

3Mobile devices can typically be equipped with a GPS receiver that provides them with the synchrony
assumption.
4Note that philosophers are still “asynchronous thinkers”.
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����� �

Figure 2. Analogy of the Driving Philosophers problem with a round-about

(send) phase, the process sends a message to the participating processes; in the second
(receive) phase, the process receives all messages sent to it; in the third (computa-
tion) phase, the process computes the message to send in the next round. Compared
with [14], our model differs in the sense that the set of participating processes (in a
given round) is not necessarily the whole set of processes, not even necessarily the set
of processes that ever take part to the problem.

Configurations and Runs. A configuration is an instantaneous cut of the state of
the system at the end of a round. Roughly speaking it represents the state of resources
and processes participating in the problem at the end of a round. More precisely, a
configuration of the system at the end of round

�
is a tuple


 ���
Waiting

	
Driving � .

Waiting � ������� is a function which gives information about processes in their
trying state at the end of round

�
: for any resource

�
,�� � , Waiting $ / ' is the set
of processes in the entry section for

� ,
,5 and is � if no process has requested this

resource. Driving � ��� ��� ��� �
is a function which gives information about

resources that are occupied at the end of round
�
: for any resource

�-, � � , Driving $ / '
is the process that owns

� ,
in



, or
�

if no process owns
� ,

. A run ! is a (possibly
infinite) sequence of configurations, ordered according to global time, starting from
some initial configuration



. We say that a configuration


 �"�
Waiting

	
Driving � is

gridlocked if # � , � �$� Driving $ / '&%�'� .

The Canvas. We first give a generic canvas for the Driving Philosophers problem
in Figure 3. Key to this canvas is a predicate that defines when processes are allowed
to effectively access a resource. We instantiate this canvas to various algorithms: each
algorithm ( corresponds to a predicate pred $)( ' . The description of the canvas is
divided between the mechanisms ensuring mutual exclusion and starvation freedom.

As far as mutual exclusion is concerned, any process maintains two local sets
pendingRequests.init and pendingRequests.transit of pending requests of processes,

5This may represents at most two processes: one in the round-about, transiting through this resource, and
one new process.
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Critical section procedures for ��� :
1: init � �����
	��
2: pendingRequests � ��
�������� { � pendingRequests.init � pendingRequests.transit � }
3: starvers � ��
�������� { � starvers.init � starvers.transit � }
4: resources � ���
5: acquiring � � entryRound � ���
6: res ��� � res ��� ���
7: procedure entry 
 � � , � {Entry section for process  � and resource ! � }
8: entryRound � �"� ; acquiring � � , { ! is the round number at which entry ��#$�&%
� is invoked}
9: if init then

10: pendingRequests.init � � pendingRequests.init ')(*
 � � , � entryRound ��+
11: else
12: pendingRequests.transit � � pendingRequests.transit ')(,
 � � , � entryRound ��+
13: wait until beginning of next round {To ensure we send our init or transit message}
14: wait until acquiring ���
15: return

16: procedure exit 
 � � , � {Exit section for process  � and resource ! � }
17: if res �-� , then res �.� ��� else res �-� ���
18: return

19: upon beginning of a round � do
20: resources � ���
21: for all

30/ ( � � � +�� res 132��� do send 
�46587:9�;�<
=�5�� � � res 1*���
� to all participating processes
22: for all 
 3 � ,?> ��� > � / pendingRequests.init do send 
�@BA,C D�� 3 � ,?> ��� > � to all participating processes
23: for all 
 3 � ,?> ��� > � / pendingRequests.transit do send 
�E6<�F�A,7�C D�� 3 � ,?> ��� > � to all participating processes

24: upon receiving msg ��
�4G5H7:9�;,<�=�5,� 3 � ,?> �$� > � do
25: resources � � resources ')(,
 3 � ,?> ��� > ��+
26: upon receiving msg ��
�@BA,C D�� 3 � ,?> ��� > � do
27: pendingRequests.init � � pendingRequests.init ')(,
 3 � ,?> ��� > �$+
28: upon receiving msg ��
�EG<�F�A,7:C D,� 3 � ,?> ��� > � do
29: pendingRequests.transit � � pendingRequests.transit ')(,
 3 � ,?> ��� > ��+
30: upon end of a round � do
31: for all 
 3 � ,?> ���
� / resources do {Old init and transit messages are removed}
32: pendingRequests.init � � pendingRequests.init IJ(,
 3 � ,?> �&K8��+
33: pendingRequests.transit � � pendingRequests.transit I�(,
 3 � ,?> �&K8��+
34: starvers.init � � starvers.init I�(,
 3 � ,?> �LKH�$+
35: starvers.transit � � starvers.transit I�(,
 3 � ,?> �&K8��+
36: if M�
 3 � ,?> �$� > � / pendingRequests.init and � >6N Starving 
 entryRound � then
37: starvers.init � � starvers.init ')(,
 3 � , > ��� > ��+
38: if M�
 3 � ,?> �$� > � / pendingRequests.transit and � >ON Starving 
 entryRound � then
39: starvers.transit � � starvers.transit ')(,
 3 � ,?> �$� > ��+
40: if acquiring 2��� then
41: if pred 
�PQ� then
42: if res �-��� then res �.� � acquiring else res �-� � acquiring
43: acquiring � ��� ; init � ��RTS�U , �
Figure 3. Canvas for our Driving Philosophers algorithms, instantiated with predicate
pred V�WYX

respectively new or in transit.6 The union of the two sets is denoted by pendingRequests.
Both sets are updated at the end of each round, with the messages received during the
round. Each message consists of a tuple, where the first field is the type of the message
(i.e., Z\[^]`_�a-bdce[ , f�g-hji , or klbdm�g.]�hji ), the second field is the identifier of the process
sending the message, the third field is the identifier of the resource involved, and the
fourth field is the round number in which the message is sent. We assume that the sets

6A process is in transit as soon as it owns a resource.
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automatically eliminate duplicate entries. A process
� �

that wishes to access a resource
sends a message f�g-hji or klbdm�g.]�hji (depending on whether

� �
is new or in transit) with

its process identifier and its entry round. When a process
� �

owns a resource
� ,

,
� �

announces to the other participating processes that it holds
�
,

, by sending a message
Z\[^]`_�a-bdce[ in every subsequent round in which

�
�
holds

� ,
. Processes record the set

of busy resources in the set resources.
As far as starvation freedom is concerned, any process

�
�
maintains two local sets,

starvers.init and starvers.transit, with the identity of “starving” processes, respectively
new or in transit. starvers denotes the union of the two sets. To decide whether a
process is starving,

� �
uses a function Starving ���'��� , which

� �
applies to its own

entry round (i.e., the round at which
� �

invokes the entry section), stored in variable
entryRound, and then compares the result with the entry round of other processes. At
the end of any round,

� �
adds to starvers the processes which are waiting since earlier

than Starving $ entryRound ' . Process
� �

removes a process from its set starvers as soon
as
� �

receives a message Z\[^]`_�a-bdce[ from this process. We let function Starving be
Starving $ � ' � � )�� , where � is a constant, for instance � ����� 	��
	 	 � � 	������ . Different
choices are possible for function Starving.

Before accessing any resource, predicate pred $)( ' must hold true for a process to
enter. pred $ ( ' is defined in a generic way as:

pred V�W X �� predMutex 
� V predInit V�WYX�
�� predStarvers 
�� predGridlock � X���� init ��
�
predTransit V�WYX�� init ���

where predInit $)( ' and predTransit $)( ' are defined separately for each instance of the
canvas, and are respectively evaluated by new processes and processes in transit, as
part of pred $)( ' . predMutex and predStarvers are defined as:

predMutex
�� V������
� � X�� resources

predStarvers
�� starvers !�#" 
 V%$&�'��X�!� min ( >%) *�+ V-,
� �/. X10 V-,
�'� . � �/. X  starvers 23�

where function min (resp. max) takes as subscript the variable for which the min-
imum (resp. the maximum) is considered (in the order of appearance of the vari-
ables if more than one). predMutex ensures mutual exclusion at the resource and is
generic to both new processes and processes in transit. predStarvers ensures starva-
tion freedom, by preventing new processes to access a free resource, when there is
a starving process (unless the starving process is the process evaluating predStarvers
itself). predGridlock

�
avoids a gridlock, by preventing a new process to access a free

resource, when this process could create a cyclic chain of waiting processes. The in-
dex . in predGridlock

�
allows a process

� 3
distinct from

�2�
to evaluate predGridlock

with
� �

’s identity. In contrast, the predicates predMutex and predStarvers are always
evaluated by and concerning a single process

� 3
.

Roughly speaking, predGridlock
�

is described as “there may remain no free re-
source in next round and . is the highest process id in f�g-hji messages for free resources
with the shortest waiting time and

� �
does not only receive its own f�g-hji message.”
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More precisely, let
/�� S�� be the highest resource identifier process

� �
is aware of,

from the messages received in previous rounds.7 predGridlock
�

is defined as:

predGridlock �
�� � �  � � �'���	��
����OV��3� ������X  pendingRequests 
 resources 


V%$&�'��X ������� ( > ) *
+ V-,
� � . X10 V-,��'� . � � . X  pendingRequests.init 

V��3��� . �'��X � resources 2 
 pendingRequests 
 resources !� + V%$&� �3� ��X 2��

Predicting a gridlock is not easy, because the number of ressources. The idea used
in the predicate is to make sure the new configuration always contains at least a free
resource. We state a preliminary lemma, in sight of proving the mutual exclusion
property of the Driving Philosophers problem, separately from any specific instance
of the canvas.
�����������

If process
� �

owns resource
� ,

in round
�
, no process but

� �
may own

��,
in round

� % �
.

A Simple Sequential Algorithm. Clearly there are solutions to the Driving Phi-
losophers problem in the synchronous model. A simple algorithm consists in allowing
a single process at a time in the round-about. A process

� �
, that wishes to access

resource
��,

, sends a request message to all other participating processes, as soon as� �
takes part in the problem. Process

���
enters the critical section if and only if (a) in

the previous round, there was no message from any process in the critical section, and
(b)
�2�

is the process in pendingRequests.init which has been waiting for the longest
period of time. The algorithm, denoted Serial, is obtained by instantiating the canvas
in Figure 3 with the following predicates:

predInit V Serial X �� V%$&� ��X � min ( >�) * + V-,
� � . X10 V-,
��� . � � . X  pendingRequests.init 2 

V���� �3� � X�� resources

predTransit V Serial X �� true �
In the next paragraph, we refine our problem. Indeed we forbid such solutions by
requiring an additional property to the Driving Philosophers problem.

Concurrency. To avoid sequential solutions such as the one described above, we
add a concurrency property to our Driving Philosophers problem. We reformulate the
definition of concurrency from [5] in our settings:8

(P3) From any configuration



,9 any invocation of an entry section entry $1. 	0/ ' by� �
for
��,

is granted within the minimum number of steps for any entry section

7In Figure 3, maintaining %�� ��
 up-to-date when new messages are received is not shown.
8Indeed the very same definition of concurrency (“The solution does not deny the possibility of simultaneous
drinking from different bottles by different philosophers”) does not apply in our case. In our case for
instance, a process cannot enter the round-about if its presence might cause a gridlock, although it may not
be in direct conflict with any other process.
9Note that in a given configuration ! , no process may be starving. Starvation appears when we consider a
sequence of configurations, i.e., a run.
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invocation to return in any run, unless (1) there is a concurrent entry section
invocation for the same resource (contention on

�
,
), or (2) the configuration re-

sulting if all concurrent yet non-conflicting entry section invocations are granted
(including

� �
’s one) may be gridlocked.

Looking ahead, we introduce a relation ��� to compare different algorithms with re-
spect to their degree of concurrency.

� �����	�
�	����

���
Let ( � and ( � be any two distinct Driving Philosophers algorithms.

We say that ( � is more concurrent than ( � , denoted ( � � � ( � , if (1) for any con-
figuration



in which any new process

� �
has invoked entry $�. 	0/ ' for resource

� ,
and

pred $ ( � ' is true at
� �

(i.e., for any process
� �

which is in its trying section and is going
to enter its critical section), then pred $)( � ' is true at

� �
, and (2) there is a configuration
 �

such that pred $ ( � ' is true and pred $ ( � ' is false, at
� �

.

Algorithm Concur1. Roughly speaking, the idea of our first concurrent algo-
rithm, is that processes initially compete to access their first resource; once a process
owns a resource, it has priority on the next resource over a new process. The algorithm
is defined with the following predicates:

predInit V Concur1 X �� V��3�'�
�'��X�� pendingRequests.transit

predTransit V Concur1 X �� true �

��� ��
�� �����
Concur1 solves the Driving Philosophers problem, and is concurrent.

Algorithm Concur2. Roughly speaking, in our second concurrent algorithm, a
new process

� �
has priority over a process that already owns a resource, unless

� �
detects a potential gridlock or a starving process (distinct of

� �
). The algorithm is

defined by the following predicates:

predInit V Concur2 X �� true

predTransit V Concur2 X �� V��3� �����
�'��X � pendingRequests.init �
V��^V-,
����� �
� ��X  pendingRequests.init 
 predGridlock* X��
V��^V-,
��� . �'��X  starvers.init 
�� . !� �����,X��

��� ��
�� ���"!
Concur2 solves the Driving Philosophers problem, and is concurrent.

3 Local Fairness
It is appealing to define a notion of fairness that takes into account the position of

a process with respect to the resource(s) it owns. In this section we introduce a new
notion of fairness, denoted # -fairness, defined only within a proximity scope, and pro-
pose a locally fair algorithm. We relate concurrency with fairness, and prove that our
locally fair algorithm cannot be concurrent for most locality values. We first introduce
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� -starvation,10 to crystallize the notion of starvation in local fairness. We also intro-
duce, for any resource

� ,
and any � � � , a set of resources denoted by cluster $ /-	 � ' ,

corresponding to the resources neighboring
� ,

within a radius of � resources. Finally,
we define the resources neighboring the location of a process

� �
as neighborhood $1. ' .

Formally, we have:

� �����	�
�	����

���
For any resource

� ,
, a process

�2�
is � -starving if it invokes entry $1. 	�/ '

in round
�
, and does not return from the invocation before round

� % � .

� �����	�
�	����

���
For any resource

��,
and any � � � ,

cluster $ / 	 �2' � ��� , ����� 	�
 	�������	 ��,�	������(	�� , � � �
� �	�
 � .
� �����	�
�	����

���

For any process
�2�

, neighborhood $1. '�� ��� , �
� 	�� , 	�� , � � �

if
�2�

owns� ,
or invokes entry $1. 	�/ ' .

� �����	�
�	����

���
A Driving Philosophers algorithm is # -fair if no new process

�
�
,

before returning from entry $1. 	�/ ' , waits more than any other process that invokes any
entry section after

�2�
to access its first resource within cluster $ / 	 #�' , unless (1) the

configuration resulting if all concurrent yet non-conflicting entry section invocations
are granted (including

� �
’s one) may be gridlocked, or (2) there is (at least) a � -

starving process.

��� ��
�� �����
There is no concurrent, # -fair algorithm to the Driving Philosophers

problem, for any ��� #�� � .
Algorithm x-Fair. This algorithm is # -fair according to Definition 8. In case of
possibility of a gridlock or � -starvation, processes in transit have a static priority over
new processes. The algorithm is defined by the following predicates:

predInit V x-Fair X �� V entryRound �&$�X�� min ( >�) * + V � . � ,�X10� V-,�� � . � � . X  pendingRequests.init 
�� .  cluster V ��� � X�� ��
V-,
��� . � � . X  pendingRequests.transit 
�� . � ���! � "$#�% 2

predTransit V x-Fair X ���
V entryRound �&$�X'& min ( >�) *�+ V � . � ,�X10 V-,��'���( � " # � � . X  pendingRequests.init 2 % ��
�^V-,
�����! � " # � � . X  pendingRequests.init 
 V � . ��,�X)& V entryRound �&$�X 
 predGridlock* % ��
�^V-,
��� . ����X  starvers.init 
�� . !� ���! � " # % �

Roughly speaking, a new process may access its first resource only if it has been
waiting for a longer time than a process in transit, trying to access the same resource.
This general rule cannot be satisfied in all cases. More precisely, when there is a risk

10In Figure 3, * -starvation is hidden behind function Starving.
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of gridlock or when a new process is starving, any other new process must refrain from
accessing the resource, and must give way to processes in transit.

��� ��
�� ��� ���
x-Fair solves the Driving Philosophers problem, and is # -fair for

any
� � #�� � .

� 
���
������
��� � �
x-Fair is not concurrent, for any � � # � � .

��� ��
�� ��� � �
1-Fair is concurrent.

��� ��
�� ��� � �
Concur2 � � 1-Fair � � Concur1 � � Serial.

4 Impossibility Results
Asynchrony

We consider here an asynchronous model, where the time taken by any process
� �

to execute a step is finite but unknown, the time taken by
�
�

to use any resource
� ,

is finite but unknown, and processes do not fail. Communication is reliable, in the
sense that any message sent is eventually delivered, no spurious messages are created,
and no messages are duplicated. Communication is asynchronous in the sense that
the message propagation time is finite but unknown, and may be arbitrarily large.
Intuitively, mutex is not solvable in this model because we do not know from which
processes we may receive messages, and how long we may wait before considering
that there is no process to communicate with. The mutex impossibility automatically
implies the impossibility of the Driving Philosophers problem in such a model, as the
(non-concurrent variant of the) Driving Philosophers reduces to mutex.

��� ��
�� ��� � !
There is no solution to the mutex problem in an asynchronous model

amongst an arbitrarily large set of processes.

� 
���
������
��� � �
There is no solution to the Driving Philosophers problem in an

asynchronous model amongst an arbitrarily large set of processes.

Locality
In this section, we investigate the solvability of the Driving Philosophers problem

with local communication, revisiting the assumption that all participating processes
may directly communicate with each other, but considering that processes may com-
municate only with nearby processes. This local communication assumption is mo-
tivated by the limited communication range of typical ad-hoc mobile devices. We
conjecture the impossibility of a solution to the Driving Philosophers problem with
local communication, and prove it for a restricted case. Informally, we say that com-
munication is � -local for any process

�
�
, or that

�2� � -communicates, if
�2�

may com-
municate only with processes whose neighborhood are in the cluster of any resource
within

�2�
’s neighborhood. More precisely, let Scope

�
be the set of processes to which� �

may send a message, or from which
���

may receive a message. For any process� �
, resource

� ,
and � � � , we say that communication is � -local, if # � 3 � Scope

�
,� ��,&�

neighborhood $1. ' , such that neighborhood $
	 '���
���� / 4�� � $ / 	 � ' %� � .
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� 
������������
� � � �
In any Driving Philosophers algorithm, there exists a run of ( ,

for which there exist a process
� �

and a resource
� ,

such that, for any � � � , be-
tween the invocation entry $1. 	�/ ' and its return, there exists � � � such that

� � � -
communicates.

We prove a weaker proposition, Proposition 18, which corresponds to Conjecture 16
restricted to algorithms belonging to a class we introduce and we denote by�	��

���������
��� ������� ����� � �"!$#%�

.

� �����	�
�	����

� � �
An algorithm solving the Driving Philosophers belongs to�	��

���������
��� ������� ����� � �"!$#%�

if any new process
� �

may return from its first invocation to
entry $�. 	�/ ' only if no process owns any resource in cluster $ / 	 �2' .
& ��
('�
*) �	����

� � �

In any Driving Philosophers algorithm
( �+�,�-
��.�����/�
��� �
�0��� �1���2� �"!�#%�

, there exists a run of ( , for which there exist a process� �
and a resource

� ,
such that, for any � � � , between the invocation entry $1. 	0/ ' and

its return, there exists ��� � such that
� � � -communicates.

5 Concluding Remarks
Since Dijkstra’s seminal paper [6] which first stated the mutual exclusion (mu-

tex) problem and solved it in a system where processes communicate using shared
memory, many mutex solutions have been given. In the message passing model,
mutex was first solved by Lamport [12]. Other papers have refined his result, im-
proving the performance of mutex algorithms (e.g. [13]). Several variants of mutex
have later appeared in the literature, for instance group mutual exclusion [11], and
� -exclusion [8]. In the Dining Philosophers, a fixed set of processes is organized as
a ring. The Drinking Philosophers generalizes the ring of the Dining Philosophers to
an arbitrary graph of processes, whereas [3] generalizes all philosophers problem as
neighborhood-constrained problems. [3] however assumes a static configuration of
processes and resources. Interestingly, the same generalizations can be made to the
Driving Philosophers. This generalization is however orthogonal to the issues raised
in this paper, and is subject to future work.

To our knowledge, all attempts to address mutex kind of problems in mobile ad-
hoc networks [4, 16] consider weak variants of the problem where mutual exclusion
is ensured only when the network is “stable” for a certain period of time.

In fact, another seminal problem in distributed computing, namely consensus, has
recently been considered in a model with an unbounded number of processes [15],
more precisely, where the participation of any process to the algorithm is not required.
The underlying model however assumes a shared memory. Interestingly, consensus
is in fact not solvable in our system model (no shared memory), even if we consider
strong synchrony assumptions. This conveys an interesting difference between the
consensus and mutual exclusion problems, in the kinds of models we consider.

In the channel allocation problem [9], a known set of fixed processes (nodes) com-
municate through point-to-point asynchronous message passing. Each node knows
the list of free resources (frequency bands) in its area and the list of processes’ re-
quests for these frequencies. Any node has to grant requests of any process, but not
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simultaneously with an adjacent node, and for the same frequency. The problem does
however not consider starvation issues, as these frequency allocations occur for calls
that can be dropped. In the multi-robot grid (MRG) problem [10], a fixed set of robots
has to move on a grid to reach specific targets. The number of robots is known and no
new robot may enter the grid. Furthermore to reach its target, a robot does not need to
follow a specific path.
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