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Abstract In this paper we investigate extensions of the well-known Vickrey-Clarke-Groves
(VCG) mechanisms to problems whose objective function is not utilitarian and
whose agents’ utilities are not quasi-linear. We provide a generalization of
utilitarian problems, termedonsistenfproblems, and prove that every consis-
tent problem admits &uthful mechanism These mechanisms, term&€G-
consistent(VCGc) mechanisms, can be seen as a natural extension of VCG
mechanisms for utilitarian problems.

We then investigate extensions/restrictions of consistent problems. This yields
three classes of problems for which (i) VCGc mechanisms are the only truth-
ful mechanisms, (ii) no truthful VCGc mechanism exists, and (iii) no truthful
mechanism exists, respectively. Showing that a given problem is in one of these
three classes is straightforward, thus yielding a simple way to see whether VCGc
mechanisms are appropriate or not.

Finally, we apply our results to a number of basic non-utilitarian problems.
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1. Introduction

In the Internet a multitude of heterogeneous entities (e.g., providers, autonomous
systems, universities, private companies, etc.) offer, use, and even compete with each
other for resources. As the Internet is emerging as the platform for distributed com-
puting, new solutions should take into account the new aspects deriving from a multi-
agent system in which agents cannot be assumed to be kedhest/obedier(.e., to
follow the protocol) oradversarial(i.e., to “play against”). Indeed, the entities in-
volved in the computation are driven by different goals (e.g., minimiziver own
costs) and they may aselfishly In this case, agents cannot be assumed to follow the
protocol, though they respond tacentives(e.g., a payment received to compensate
the costs).

In essence, game theory is the study of what happens when independent agents act
selfishly (for a more extensive discussion of applications of game theoretic tools and
micro economics to the Internet we refer the reader to [8, 16]). Mechanism design
asks how one can design systems so that agents’ selfish behavior results in the desired
system-wide goals. In a nutshell, each agehés a functionu; () which expresses
her utility derived from the system outcome. For instance, if the system computes a
solution X and provides ageritwith a paymentP;, then the corresponding utility is
equal tou,; (X, P;,t;), wheret; is another parameter called thge of agenti. The
difficulty here is that the typg is not known to the systeamd is also part of the input
required to construct the desired soluti&ri (e.g.,t; represents the speed of a router
and the system goal is to forward packets optimally). This piece of information is
known to agent which may report a different (false) type # ¢; in order to improve
her utility: on inputr;, the system computes a soluti&i and provides a paymeit’
such that; (X', P/, t;) > u;(X*, P, t;), whereP; is the payment thatwould have
received if reporting;. Notice that the computed solutio¥’ is not the desired one
since the input provided to the underlying algorithm is not the correct one. Therefore,
one should design a suitable payment (g such that, for every possiblg, agenti
cannot improve her utility by reporting # ¢;,. Moreover, this should hold also when
some other agentdoes not act rationally and reports# t;. The combination of an
algorithm.4 and a payment rulg(-) that guarantees this property, for every agent, is
calledtruthful mechanismvith dominant strategies.

A central question in (algorithmic) mechanism design is the study of which system
goals are achievable via truthful mechanisms, that is, if algorithiis required to
produce a certain output (e.g., an optimal solution for a combinatorial optimization
problem) does a payment functip(t) exist such that the resulting mechani&s p)
is truthful?

A large body of the existing literature focuses on the class of problems in which
the utilities arequasi-linear that is, agent’s utility factors into w;(X, P, t;) =
vi(X,t;) + P;, wherev;(X,t;) represents the valuations of agemf solution X.

For such problems, the celebrated Vickrey-Clarke-Groves (VCG) mechanisms [4, 10,
18] guarantee the truthfulness under the hypothesis that the algadthmaximizes

the function) _, v; (X, ¢;). VCG mechanisms have been successfully applied to a mul-
titude of optimization problems involving selfish agents with applications to network-
ing [1, 2, 7, 14, 17] and electronic commerce [5, 11]. All these works assume that the
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problem isutilitarian, that is, the utility functions are quasi-linear and the objective
maximization function can be written as the sum above. Moreover, even though Nisan
and Ronen [13] first focused on problems whose objective function is not utilitarian,
their n-approximation mechanism is nothing but a VCG mechanism for a related util-
itarian problem. Actually, VCG mechanisms remain the only general technique to
design truthful mechanisms (see Sect. 1 for a discussion on previous related work).

Unfortunately, there are problems for which (i) the objective function is not the sum
of the agents’ valuations and/or (ii) the utility function is not quasi-linear. Consider
the following basic problem (see Sect. 3.2 for a more detailed description). In a com-
munication network, each linkcan successfully transmit a message with probability
ge € (0,1). We want to select anost reliable pathi.e., a path between two given
nodes which maximizes the probability that none of its links fails. Links are owned by
selfish agents which are asked to report a (possibly uncorrect) probapitity0, 1).

We provide to a chosen linka payment specified by a functipp(-) if and only if link

e performed the transmission correctly. Each agent tries to maximizesxpezted
amount of money receivedHence,both the objective and the utility functions can

be expressed by means of the common “operatdrThe MosT RELIABLE PATH
(MRP) problem just described can be easily reduced to a utilitarian problem by con-
sidering the logarithms of both the optimization function and of the utility functions,
thus implying the existence of a truthful mechanism. It is then natural to ask whether
this is just “good chance”, or this problem (and others) has some “similarities” with
the class of utilitarian problems.

In this paper we address this question by defining a class of problems, teomed
sistentproblems (see Sect. 2), which admit truthful mechanisms. The main advantages
of our approach are that: (i) it provides an answer to the following question: which
mathematical properties guarantee the existence of truthful mechanisms? Moreover,
for a given problem, it is easy to see whether it satisfies these properties (while re-
ducing the problem to a utilitarian one may not be as simple as foMR&); (ii)
it provides a more intuitive interpretation of the payments, e.g., for problems like the
MRP described above.

We defineVCGcmechanisms as a natural extension of the VCG mechanisms and
show that they are truthful for consistent problems. We then consider possible ex-
tensions of our result and provide both positive and negative answers depending on
which property we add/drop from the definition of consistent problems. In particular,
we identify four classes of problems:

Conly This class is a natural restriction of consistent problems. In particular, VCGc
mechanisms are the only truthful mechanisms for problems in this class (Theo-
rem 8).

C¥°. This is a subclass of consistent problems. We prove that every problem in
this class admits a truthful VCGc mechanism which also satisfiegdtuatary
participationcondition (Theorem 10).

Cveec . This is a class of non-consistent problems in which the set of feasible solutions

none*

depend®n the private part of the input, thus not satisfying one of the constraints
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of the definition of consistent problem (see Constraint (1) in Def. 4). We show
that every VCGc mechanism for such a problem is not truthful (Theorem 15).

Chone- This is a subclass dic whose problems do not admit truthful mechanisms
(Theorem 20). As this class in non-empty (see Sect. 4.1), our assumption on the
set of feasible solutions is necessary (indeed, removing this assumption would

give asuperclas®f Cyone)-

Other problems to which we apply our results ar&R ENT TASK SCHEDULING
(see Sect. 3.2) andNAPSACK (see Sect. 4.1).

a-RENT TASK SCHEDULING is a variant of théTAsK SCHEDULING problem
considered in [13] obtained by modifying the (quasi-linear) utility functions. The
resulting problem is consistent, though straightforward reductions to a utilitarian prob-
lem do not seem to exist. This shows that the non-existence of an exact mechanism in
[13] is due to the “combination” of quasi-linear utilities with a non additive objective
function (i.e., the makespan). Finally, the problem does not admit a truthful mecha-
nism satisfying voluntary participation, thus implying ti&@f= is a proper subclass
of consistent problems.

ConcerningKNAPSACK, we consider three variants of this problem depending on
which part of the input is held by the agents (namely, the item profits, the item sizes, or
both). The corresponding versions belon@tff, CIotc andCpone, respectively. This
basic problem has applications to scheduling, resource allocation and to a problem of
web advertising [6].

Further related work.  Green and Laffont [9] showed that for certain utilitarian
problems VCG mechanisms are the only truthful mechanisms. Nisan and Ronen [14]
considered the approximability ¢iP-hard optimization problems vi#CG-based
mechanisms: these mechanisms are obtained from VCG ones by replacing an opti-
mal algorithm.4 with a (polynomial-time) non-optimal ond’. Archer and Tardos

[3] considered so calledne-parameteagents: here the valuation functions factor as
vi(X,t;) = wi;(X) - t;. The authors provided a technique which allows to obtain
truthful mechanismgA, p) wheneverA satisfies a “monotonicity” property. To the
best of our knowledge this is the only technique other than the VCG one. All above
mentioned results apply to the case of quasi-linear utility functions only.

Organization of the paper. We present some basic definitions and notation in
Sect. 2. In Sect. 3 we provide the definition of consistent problem, VCGc mechanisms
and prove our main positive results. Sect. 3.1 deals with the voluntary participation
condition, while Sect. 3.2 contains some applications of our positive results. Finally,
we prove the negative results in Sect. 4 where we also apply these results to some of
the above mentioned problems. Conclusions and open problems are in Sect. 5. Due to
lack of space some details concerning the problems formulation and some proofs are
omitted (see also [12]).
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2. Preliminaries

Informally, in a mechanism design problem one can imagine that the ihput
(Ip,I)is splitinto a public and into a private part held byagents. Public valuation
and utility functions express the agents’ preferences and how each agent “responds”
to incentives. We next provide a formal setting. Without loss of generality, we present
the definition for maximization problems.

Given any vectod = (y,...,y.) € O1 X ... x O, letI_; = (y1,...,yi_1,
Yitls - Yk) @Nd (I, x3) = (Y1, ., Yi—1, T, Yix1,-- -, Yk). Moreover, ifZ =
(Ip, I), we |et<I,i, (El> = (IP, <I,1,{I?Z>)

DEFINITION 1 A Mechanism Design Maximization (MDMax) problem is spec-
ified as follows:

m Private instance.Each agents; has available aprivate input typet; € ©;,
where®; denotes the type space of agenivhich is public knowledge. Given
the part of the instancép which ispublic knowledgeZr = (Ip, Ir) is the
private (or true) instancepecified by the true agents’ types = (t1, ..., tx).

m  Reported instanceézach agent:; makes public a reported type € O;; then,
forIg = (r1,...,7L), thereported instancér = (Ip, Ir) is the input provided
to the algorithm.

In the following, we will often writ& = (Ip, I), foravector] = (y1,...,yx) €
0; x ... x Oy to denote any possible input of the algorithm (i.e., any “re-
portable" instance) as opposed Tg- and Zy representing the specific private
and reported instances, respectively.

m Feasible solutionsGiven any instanc&€ = (Ip,I), ®(Z) denotes the set of
feasible solutions, an@(Ip) = Urece, x..xe, ®Up,I"). The set of feasible
solutions does not depend on the private part of the input, i.e.,

Vip VI € ©1 X ... X O, q)(lp7l>:(b(lp). (1)

= Objective function.A functionu(X,Z) expresses the measure of a solution
given any instancg.

= Valuation functionsFor every agent;, a functionuv; (X, t;) expresses theal-
uationof a; of a solutionX, given any valug; € ©,. The functiorv;(-,-) is
public knowledge, while one of its arguments is not (hamely, thettype

We say that a solutioX does not involve agent; if v;(X,y;) = v?, for a fixed
valuev! and for everyy; € ©,. We assume that! is public knowledge and
that, for everyX, it is possible to decide whethéf does not involve;.

= Agent payments and utility functionBor every agent; it is possible to define a
payment functiom; (-), representing some sort of incentive for agentThen, a
functionu; (X, t;, P;) expresses thatility of a; of a solutionX, given its (true)
typet; and givenp;(-) = P; (this value represents how mueh benefits if a
solution X is output anda; receives a paymehtequal to P;). This function
depends only on the valueq X, t;) and P;, and represents what agedsm tries
to maximize.
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We use the symbd® to denote the fact that; receives no payment. In this
case, for every, we have that,; (X, t;, P°) = v;(X, t;).

m  Goal. Find an optimal solution for the true instance, that is, a solutih <
®(Zr) such that

(X", Zr) = max{u(X,Zr) | X € ®(Zr)}. 2

Observe that, because of Constraint (1), it is always possible to obtain a feasible
solution. However, our goal is to find an optimal one, whitdpendsn the agents’
types (i.e., the true instance). In order to solMd@Max problem we need a suitable
combination of a payment scheme and an algorithm which guarantees that (i) no agent
has an incentive in misreporting her type and (ii) the algorithm, once provided with
the true instanc&r, returns an optimal solution for that. In particular, the usual
underlying assumption in mechanism design is that an agent misreports her type only
in the case this might improve her utility (see e.g. [15]).

DEFINITION 2 (TRUTHFUL MECHANISM) A mechanisnfor a MDMax prob-
lem is a pairM = (A, P), whereA is an algorithm computing a solutiad(Z ) and
P(Zr) = (p1(Zr),---,px(Zr)) is the payment scheme. A mechanistn= (A, P)
for a MDMax problem istruthful if, for all ¢,

VI_iVry b ui (AT, ti), ti, pi(Z—is ts)) > wi (AT i, 1), ti, pilZ—i, 74))-

Observe that truthful mechanisms guarantee that, for ewgryeportingr; = t;
is the best strategy even when some other agents misreport their typd_(j.e4
<t1, ce 7ti—17ti+17 RN 7tk>)

Another relevant feature of a mechanism is that of guaranteeing that a truthfully
behaving agent; incurs in a utility which is not worse than the utility she would
obtain if not “participating in the game”, that is, if a solutida not involving a; is
computed and; receives no payment (see Sect. 3.1):

DEFINITION 3 (VOLUNTARY PARTICIPATION) A mechanisnM = (A, P) for
a MDMax problem satisfies theoluntary participation condition (VR})

Va; VI wi(AT i i), b, pi(Ti ti)) > 0.

Given an instancé, for the sake of simplicity, we denote % ; the instance
(ZT_;, 1), wherel ¢ O, is a “dummy" value which makes unfeasible every feasible
solution involving agent;. In the rest of the paper we considgstimal mechanisms
that is, mechanism31 = (A, P) that use an algorithred computing an optimal
solution w.r.t. theeported instanceA truthful optimal mechanism provides a solution
for a MDMax problem: the truthfulness guarantees that the agents, being rational,
report their types; and then algorithrod computes a solutioX * = A(Zr) satisfying
Eq. 2.

3. Truthful mechanisms for consistent problems

In this section we first introduce the classaunsistent problemgef. 4) and a
family of mechanisms for this class which we c’ICGc mechanism®ef. 5). We
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show that VCGc mechanisms are truthful for consistent problems (Theorem 6) and
prove that, under some natural assumptions, VCGc mechanisms are the only truthful
mechanisms for consistent problems (Theorem 8).

DEFINITION 4 (CONSISTENT PROBLEM) A MDMax problem isconsistentf

(i) p is a consistent objective function, i.e., for any instafice- (Ip,I), with I =
(Y1,-..,yk), and for anyX € ®(7), it holds thatu(X,Z) = @, vi(X, y;), where

‘@’ is a suitable operator which enjoys the following properties: associativity, com-
mutativity and monotonicity in its arguments; (ii) the utility function is such that

The class of all consistent problems is denoted@ssistent.

DEFINITION 5 (VCGC MECHANISMS) A (optimal) mechanisri4, P) for a con-
sistent problem is & CGc mechanisnf, for all 4, there exists a functioh;(Z_;) such
that, denotedu_; (X, Z) = B, 4, v; (X, y;):

pi(Z) = p—i(AZ),T) ® hi(Z-). 3)

The following theorem generalizes the (proof of the) analogous result in [10] about
the truthfulness of VCG mechanisms for utilitarian problems (i.e., the case +).
Naticeably, it exploits Constraint (1) (see [12]).

THEOREM 6 A VCGc mechanism for a consistent problem is truthful.

We next show that, under some natural assumptions, VCGc mechanisms are the
only truthful mechanisms for consistent problems.
DEFINITION 7 (THE CLASS CJ¥°.) A consistent problerfil belongs toC:¥ if
its operator enjoys the following properties: identity elemésnt inverse and strict
monotonicity’ and the type spaces are complete, (W&, Vi, {v;(-,y:) | i € ©;} =

{f : 9(T) — R)).

The proof of the following theorem is a non-trivial adaptation of the proof of a
similar result for (a subclass of) utilitarian problems in [9] (see [12]). However, our
result is stronger since it shows tieateryconsistent problem ifi;¥" has essentially a
“unique” truthful mechanism: the VCGc mechanism in Def. 5, where the only degree
of freedom is on the definition of the functidn(-).

THEOREM 8 Let (A, P) be a truthful mechanism for a problefh € C5°. Then,
(A, P) is a VCGc mechanism fai.

3.1 The voluntary participation condition

In practical applications, agents have the freedom/right to put themselves out of
the “game” if the final mechanism outcome (i.e., the utility) turns out to be disad-
vantageous for them. For example, consider the case in which the valugtior;)
represents a cost requireddpin order to implement the solutioX andp;(Zr) is
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the amount of money that; receives for that. Agent; has the freedom to refuse the
payments and to not implement the solution, if the utility deriving fraiiX, ¢;) and
pi(Zr) is less tharo (i.e., the utility in case agent; does not perform any work nor
receives money).

DEFINITION 9 (THE CLASS Cj£°.) A consistent probleril belongs toCy if
the operator enjoys the following properties: identity element, inverse and strict mono-
tonicity, and

Va;, 0+#®(I_;) C ®(Z). ()

The following theorem gives a sulfficient condition for the existence of VCGc mecha-
nisms which satisfies VP (see Def. 3).

THEOREM 10 LetII be a consistent problem i6;# and (A, P) be the VCGc
mechanism fofl with h;(Z_;) = p—i(A(Z—-;),Z-;)~ 0y Then(A P) satisfies VP.

Proof. ConsiderX = A(Z_;,t;) andP; = p;(Z_;,t;), foranyZ_,;. SlnceA(Z_l)
®(Z_;), it holds thatu(A(Z_;), (Z_i,t:)) = p—i(A(Z_;),Z_;) ® v?. Moreover,
by Def.s 4 and SuZ(X, t;, Pl) = ’Ui(X, tl) D ﬂ_i(X, <I_1,tl>) D hl(I_i), and, by
associativity, monotonicity and existence of the inverse:
ul(Xa tia R) = ,U,(X, <I—iati>) D (N—i(‘A(I—i)vI—i)il D (Ug)il D U?)

= :U'(Xa <I—ia t2>) D N(A(I—i)a <I—ia ti>)71 D UO (5)
>From Condition 4 and from the optimality of, if follows that u(X, (Z_;,;))
w(A(Z_;),(Z_;,t;)). From the monotonicity of&®’, we obtain u(X, (Z_;,t;))
w(AZ ), (ZT_s,t;))~' > ig. This, EQ. 5, the monotonicity of’ yleld ui (X, t;
P;) > vY. Hence the theorem follows.

D IV

D\’I

3.2 Applications to non-utilitarian problems

We now provide two examples of non-utilitarian consistent problems whose opera-
toris ‘@'=¢" (the MRP problem) andé®’=* min’ (the a-RENT TASK SCHEDULING
problem).

The Most RELIABLE PaTH (MRP) problem.  Before introducing th&IRP
problem, let us consider a general framework in which a truthful mechanism has to be
designed on a directed weighted graphk= (V, E, w) that has an edge weight € ©
associated with each edgec E. We are givers,t € V, called the source and the
destination, respectively The goal is to find a path fremo ¢ which maximizes the
product of the edge weights. Each edgis owned by a distinct selfish agemt *
which knows the weightv, € © (i.e., her type). In the following, we will refer to this
problem as &, ONGEST MULTIPLICATIVE PATH problem LMP[O]).

The LMP[O] problem can be formalized as a consistent problem whenever the
valuation functions. (-) and the utility functions..(-) satisfy

v) =1 if eis not on the pathr,
V(T ye) = { Ye otherwise, (6)
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andu, (m, we, P.) = ve(m, we) - P.. Since the set of feasible solutions depends ont the
topology of the graph only, for 2-connected graprGenstraint 4 is met. Moreover,
for every® C R, the standard product operator is strictly monotone, thus implying
thatLMP[©]e CJE°. Hence, by Theorem 10 we obtain the following:

COROLLARY 11 For every® C R™, there exists a truthful mechanis@, p) for
LMP[O] which, for 2-connected graphs, also meets VP. In this case, for ever¥,
if X = AZr)andX_, = A(Zy_.):

L (AD)T)
AR ETCn )
we(X 1 pe(Tr)) = —METT) ®)

M—E(X—ea ITfe) .

In the following we apply the above result to théRP problem discussed in
Sect. 1. In particular, the message is forwarded from one node to the next one un-
til either (i) the message reaches the destination (ii) the link fails. In the latter
case, the transmission is lost and a “dummy” message is forwarded throughout the
selected path in place of the original one.

In order to satisfy Eq. 6, we use the following rule for the agents’ payment. If
edgee is not on the chosen path, then the corresponding agent receives a payment
equal toP, = 1. Moreover, an agent in the selected path is rewarded after (and
only if) her link hassuccessfullyforwarded the message. Hence, thee agent’s
expected utility isg. P,. It is easy to see that tHelRP problem is theLMP[(0, 1)]
problem. Corollary 11 implies the existence of a truthful mecharfidiy) which, if
at least two disjointt-paths exists, also meets VP. In this case, Eq.s 7 and 8 yield the
following intuitive interpretation of payments and of utilities, respectively:

Prlno link in 7 fails| e does not fail
Pr[no link in 7_,, fails]

De (IT) =

Pr[no link in 7 fails]
Z =
ue(ms e PeI7)) = B Sinkin T fails]

wherer is the beskt-path andr_. denotes the best-path not containing.

>From Corollary 11 it is possible to obtain analogous results foARBITRAGE
problem, which is discussed in [12].

The a-RENT TASK SCHEDULING problem.  We are giverk tasks which need
to be allocated ta machines, each of them corresponding to one agenv;;ﬁ ldetnote
the minimum amount of time machinés capable of performing tagkand letX; be
the the set of tasks allocated to agent The goal is to minimize the makespan, that
is, the maximum, over all machines, completion time. The type of agsrgiven by

t; = (t},...,t4), thus implyinglr = (t1,...,t,), Ip = (k,n) andZy = (Ip, I7).
The set of feasible solution®(Z) is the set of all partitions¥ = X,..., X, of
the tasks, whereX; denotes the tasks allocated to agent For anyZ, we define
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v (X, t) = =D jex, t; that is, the completion time of machine Agenta; is not
involved in the solutionX if X; = (. In this casey;(X,-) = 0 = v).

We consider the following variant of tHEASK SCHEDULING problem defined in
[13]. An assignment has to be computed according to the reported types. Each ma-
chines that has been selected (i.&; # () is rentedfor the duration required to per-
form the tasks assigned to it. The corresponding agent must then receive an amount
of moneynot largerthana — ZjeXi t§ = o+ v;(X,t;), wherea is a fixed constant
equal for all machines. Incentives are provided by defining, for each machine/agent,
a maximumpayment)/; that the machine will receive if used. In particular, each
rented machine is then payed timnimumbetween); anda + v; (X, t;).

The utility of an agent is naturally defined as the amount of money derived from
the renting of her machine, that isin{« + v;(X, ¢;), M;}. By letting P, := M, — a,
the previous quantity can be rewritten as

min{a + v;(X,t;), M;} = a + min{v; (X, ¢;), P; }.

To formalize the problem as a consistent problem with operattr' ‘min’ it suf-
fices to defineu;(X,¢;, P;) = min(v;(X,t;), P;), and to observe that(X,Z) =
max?_; —v;(X,y;) = min}; v;(X, y;). Hence Theorem 6 implies the following:

COROLLARY 12 Thea-RENT TASK SCHEDULING problem is consistent. Hence,
it admits a truthful mechanism.

The fact that the only difference between théeRENT TASK SCHEDULING prob-
lem and theT'AsKk SCHEDULING problem in [13] is on the utility function provides
an interesting comparison, since in [13] the authors proved that no exact (or even
2-approximate non-polynomial-time) truthful mechanism exists. Corollary 12 shows
that this is due to the fact that the utility functions are quasi-linear.

REMARK 3.1 (ON THE VOLUNTARY PARTICIPATION) Observe thatno mech-
anism for thex-RENT TASK SCHEDULING problem can guarantee the VP condition.
Indeed, it suffices to consider instances for whidh{t}} > «, in which case the util-
ities are always negative. Heneg;RENT TASK SCHEDULING ¢ Cy2£°.

4. Impossibility results

In this section we investigate extensions of our positive result (Theorem 6) to prob-
lems obtained by removing Constraint (1) in the definitiocafsistent:

DEFINITION 13 (RELAXED CONSISTENT PROBLEM) A problem is aelaxed
consistent problerif it satisfies all constraints of Def. 1 except for Constraint (1), as
well as the two items in Def. 4. The class of all relaxed consistent problems is denoted
asrelaxed consistent.

In Sect.s 4.1 and 4.2 we define two subclasseslaked consistent and show that
problems in these two classes do not admit truthful VCGc mechanisms (Theorem 15)
and truthful mechanisms (Theorem 20), respectively. We also prove that the latter
class in included in the former (Theorem 20).
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4.1 A class with no truthful VCGc mechanisms

Intuitively speaking, we next consider a class of problems for which some non-
feasible solutionX has a measure strictly better than any feasible solution. Moreover,
such an unfeasible solution can be output when reporting a falsednhat is, X =
A(I) € ®(Z). Formally, we have the following:

DEFINITION 14 (THE CLASS C,&c.) Aproblemilis said to be in the class;&:
if it is relaxed consistent and the following holds: (i) the operatof Satisfiesstrict
monoton|C|ty (||) there exist, I= (v1,-..,yk) andy; € ©; (y; # ¥;) such that, for

Z = (Ip,I)andZ = (Z_;,7;), it holds that
AT) ¢ ®(T) andu(A(Z),T) > u(A(Z), ). 9)

THEOREM 15 No problemlI € C;&° admits a truthful VCGc mechanism.

none

Proof. Let (A, P) be a VCGc truthful mechanism féf and beX = A(Z) andX =
A(Z). Then:w;(X,7:,pi(Z)) = (by Def.s 4, 5)U1(X i) ® (p—i(X,I) ® hi(Z-;))
= (by associativity of &' and by Def. 4)u(X,Z) & hi(Z_;) < (by Eq. 9 and strict

monotonicity of ©') u(X,Z) ® hi(Z_;) = (by Def.s 13, 14y, (X, i, p;(Z)). This
contradicts the truthfulness o, P). O

In the following we provide two examples of problems in the cl&4g: which,
by Theorem 15, do not admit a truthful VCGc mechanis®NApsack and the
2ND SHORTEST PATH.

The Knapsack problem.  We consider the so called variant KINAPSACK of
the classical optimization problem, which can be described as follows. We are given
a set ofn items{1,...,n}, each one characterized bygofit v; and asizes;. The
goal is to find a set of items such that its total occupancy does not exceed a given
capacityB and the total profit is maximized. Hence, the set of feasible solutions is
®(Z)={X €{0,1}" | >_I" | X,0; < B} and the total profit of a solutioX € ®(Z)
is given byu(X,Z) = Y1, Xim.

Each item: is associated with an ageat that holds a part of the instance and
derives from the outcome a utility; (X, ¢;, P;) = P; + v;(X,t;), wherev; (X, y;) =
X,;m;. Depending on how the private part of the instance is defined we distinguish
the following three problem versions, which have have a natural application to the use
of a shared communication channel of limited capacity and to a problem of “selling”
part of a web page (typically, a marginal strip of fixed width/height) for putting some
advertisements (see [6] for a description of the model):

m  KNAPSAcK[rn], where each agent; only holds the profitr; = ¢, associated
with each itemi, whereas every sizg; is public knowledge.

m  KNAPSACK[c], where each agemt; only holds the size; = ¢; associated with
each itemi, whereas every profit; is public knowledge.

m  KNAPSACK|[7, o] where each agent; holds both the profitr; and the sizer;
associated with each iteinthat is,t; = (m;, 0;).
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It is worth noticing that onlyKnaPsAck[n] meets Constraint (1), as sizes are pub-
lic knowledge andP(7) is constant. Then, this proves Theorem16. On the contrary,
KNaPsack[o]landKNAPSACK[T, o] satisfy Def. 4 except for Constraint (1). In these
case we can state Theorem17.

THEOREM 16 Knapsack([r] € CJ#. Hence, it admits a truthful mechanism
which also meets VP.

THEOREM 17 KNaPsack[o], KNAPSACK[r, o] € C;&-. Hence, they do not ad-
mit a truthful VCGc mechanism.

The 28D SnorTEST PaTH problem.  Let us consider an undirected weighted
graphG = (V, E,w) and two nodes, ¢t € V. The objective is to find a path whose
length is minimal among allt-paths that have no minimal lengthd More formally,

for any instancg = G, if @ is the set of allst-paths in(V, E) and X; (Z) C P

is the subset of the shortest-paths, ®(Z) = I1(Z) \ X;(Z). Similarly to the
SHORTEST PATH problem mentioned in [13], the valuation function of the agent
owing edgee is equal to

—r, ifeem,
ve(m, Ir) = { 0  otherwise.

Utilities are quasi-linear and the objective function is the total weight of the path, that
iS, D een Te- By letting u(m,Ir) = > .. —7e, @and by observing thai(r,Zr) =
> eer Ve(m, Ir), we can easily prove the following result:

THEOREM 18 The2ND SHORTEST PATH problem is inC;&:. Hence, It does not
admit a truthful VCGc mechanism.

In the next section we will strengthen the results of Theorem 17 and of Theorem 18.

4.2 A class with no truthful mechanisms

We next provide a general technique to prove the non-existence of truthful mecha-
nisms for a given problem. We will then apply this result to Kreapsack[r, o] and
to the2ND SHORTEST PATH problems and show that the reason why VCGc mecha-
nisms fail is not due to its weakness.

DEFINITION 19 (THE CLASS Cpone.) A problemil is said to be in the clasS,one
if it relaxed consistent and the following holds: (i) the operater satisfies strict
monotonicity; (i) there exist, v, I = (11,...,yx) andy; € ©; (y; # ¥;) such that,
forZ = (Ip,I) andZ = (Z_;,7;), it holds that

A(f) ¢ ‘I’(f) A Ui(A(f)a?ji) > Uz‘(-A(f),??i) A
vi(AZ),) #v A vi(A),") =v. (10)

The clas<,.ne €njoys the properties stated by the following theorem (see [12]):
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THEOREM 20 The clasSCpone is included inC,&5. Moreover, no problenil €
Chone admits a truthful mechanism.

The next result show that, in the case of the> SHORTEST PATH and KNAP-
SACK[m, o] problems, VCGc mechanisms do not fail because inappropriate. Indeed,
it can be proved that:

THEOREM 21 Both the2ND SHORTEST PATH and the KNAPSACK[w, o] prob-
lems are inC,one. HENCe, none of them admits a truthful mechanism.

REMARK 4.1 (NECESSITY OF CONSTRAINT (1)) Observe that if we remove
Constraint (1) from the definition of consistent problems, then we obtain the class
relaxed consistent (Def. 13). Theorem 21 implies thét# C,.n. C relaxed con-
sistent. Hence, Constraint (1) is necessary for guaranteeing the existence of truthful
mechanisms.

5. Conclusions and open problems

In the following figure we summarize the results obtained in this work. In par-
ticular, we have isolated several classes of problems involving selfish agents which
are defined according to some mathematical properties. The inclusions mostly follow

TRUTHFUL MECHANISMS CLASSES PROBLEMS

relaxed consistent 2ND SHORTEST PaTH (Thm 21)

| KNAPSACK[7, o] (Thm 21)
none (Thm 20) Crone ? [

no VCGc (Thm 15) Cveee | KNAPSACK[o] (Thm 17)
_one T

VDM KNAPSACK[n] (Thm 16)
ax

VCGc (Thm 6) TASK SCHEDULING [13]

consistent
only VCGc (Thm 8) (vege ) a-RENT TASK SCHEDULING

C

only
VCG [18, 4, 10] [ovs MoST RELIABLE PATH
o [‘utiafian T
ARBITRAGE
only VCG [9]

from the definitions, except for the result of Theorem 20. Moreover, the results on
the a-RENT TASK SCHEDULING problem and the fact thaf ... # (@ imply that

CiF° < consistent C relaxed consistent. Since theTASK SCHEDULING prob-

lem in [13] can be formulated as MDMax problem, the negative results in [13]
also implies thatonsistent C MDMax. It would be interesting to prove analogous
separation results among the classes. For instanééypsAack[o] had a truthful
mechanism, then we would obtafieoe & Chche. Combinatorial auction is a clas-

sic utilitarian problem (see e.g. [14]) which admits VCG mechanisms only. If would
be interesting to find aon-utilitarian problem inCZ¥. ComparingCirE® and C&
would be also worthwhile. Investigating classes for which mechanisms that use non-
optimal algorithmsA remain truthful is an important issue. Interestingly, Theorem 6
also holds when algorithrd, though non-optimal, isnaximal in its rangdsee [14]),

thus generalizing one of the results in [14] for utilitarian problems.
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Notes

1. We assume that the costs for transmitting are negligible, say equal

2.
3.

The term ‘payment’ does not necessarily mean money as it actually denotes any form of incentive.
The inverse of: is denoted byr —! and satisfies @z~ = iq,. We say that an operatgy satisfies

strict monotonicityif for every a,a’ andb, with a < o/, it holds thata & b < o’ & b.

4.

The existence of truthful mechanisms easily extends to a more general setting where each agent

owns multiple edges.

5.

If the graph is not 2-connected then the problem breaks down to independent subproblems (2-

connected components). In this case, it is easy to see that the VP condition cannot be fulfilled.
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