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Abstract In this paper we investigate extensions of the well-known Vickrey-Clarke-Groves
(VCG) mechanisms to problems whose objective function is not utilitarian and
whose agents’ utilities are not quasi-linear. We provide a generalization of
utilitarian problems, termedconsistentproblems, and prove that every consis-
tent problem admits atruthful mechanism. These mechanisms, termedVCG-
consistent(VCGc) mechanisms, can be seen as a natural extension of VCG
mechanisms for utilitarian problems.

We then investigate extensions/restrictions of consistent problems. This yields
three classes of problems for which (i) VCGc mechanisms are the only truth-
ful mechanisms, (ii) no truthful VCGc mechanism exists, and (iii) no truthful
mechanism exists, respectively. Showing that a given problem is in one of these
three classes is straightforward, thus yielding a simple way to see whether VCGc
mechanisms are appropriate or not.

Finally, we apply our results to a number of basic non-utilitarian problems.
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1. Introduction
In the Internet a multitude of heterogeneous entities (e.g., providers, autonomous

systems, universities, private companies, etc.) offer, use, and even compete with each
other for resources. As the Internet is emerging as the platform for distributed com-
puting, new solutions should take into account the new aspects deriving from a multi-
agent system in which agents cannot be assumed to be eitherhonest/obedient(i.e., to
follow the protocol) oradversarial(i.e., to “play against”). Indeed, the entities in-
volved in the computation are driven by different goals (e.g., minimizingtheir own
costs) and they may actselfishly. In this case, agents cannot be assumed to follow the
protocol, though they respond toincentives(e.g., a payment received to compensate
the costs).

In essence, game theory is the study of what happens when independent agents act
selfishly (for a more extensive discussion of applications of game theoretic tools and
micro economics to the Internet we refer the reader to [8, 16]). Mechanism design
asks how one can design systems so that agents’ selfish behavior results in the desired
system-wide goals. In a nutshell, each agenti has a functionui(·) which expresses
her utility derived from the system outcome. For instance, if the system computes a
solutionX and provides agenti with a paymentPi, then the corresponding utility is
equal toui(X, Pi, ti), whereti is another parameter called thetypeof agenti. The
difficulty here is that the typeti is not known to the systemand is also part of the input
required to construct the desired solutionX∗ (e.g.,ti represents the speed of a router
and the system goal is to forward packets optimally). This piece of information is
known to agenti which may report a different (false) typeri 6= ti in order to improve
her utility: on inputri, the system computes a solutionX ′ and provides a paymentP ′

such thatui(X ′, P ′i , ti) > ui(X∗, Pi, ti), wherePi is the payment thati would have
received if reportingti. Notice that the computed solutionX ′ is not the desired one
since the input provided to the underlying algorithm is not the correct one. Therefore,
one should design a suitable payment rulep(·) such that, for every possibleti, agenti
cannot improve her utility by reportingri 6= ti. Moreover, this should hold also when
some other agentj does not act rationally and reportsrj 6= tj . The combination of an
algorithmA and a payment rulep(·) that guarantees this property, for every agent, is
calledtruthful mechanismwith dominant strategies.

A central question in (algorithmic) mechanism design is the study of which system
goals are achievable via truthful mechanisms, that is, if algorithmA is required to
produce a certain output (e.g., an optimal solution for a combinatorial optimization
problem) does a payment functionp(·) exist such that the resulting mechanism(A, p)
is truthful?

A large body of the existing literature focuses on the class of problems in which
the utilities arequasi-linear, that is, agenti’s utility factors into ui(X,Pi, ti) =
vi(X, ti) + Pi, wherevi(X, ti) represents the valuations of agenti of solutionX.
For such problems, the celebrated Vickrey-Clarke-Groves (VCG) mechanisms [4, 10,
18] guarantee the truthfulness under the hypothesis that the algorithmA maximizes
the function

∑
i vi(X, ti). VCG mechanisms have been successfully applied to a mul-

titude of optimization problems involving selfish agents with applications to network-
ing [1, 2, 7, 14, 17] and electronic commerce [5, 11]. All these works assume that the
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problem isutilitarian, that is, the utility functions are quasi-linear and the objective
maximization function can be written as the sum above. Moreover, even though Nisan
and Ronen [13] first focused on problems whose objective function is not utilitarian,
theirn-approximation mechanism is nothing but a VCG mechanism for a related util-
itarian problem. Actually, VCG mechanisms remain the only general technique to
design truthful mechanisms (see Sect. 1 for a discussion on previous related work).

Unfortunately, there are problems for which (i) the objective function is not the sum
of the agents’ valuations and/or (ii) the utility function is not quasi-linear. Consider
the following basic problem (see Sect. 3.2 for a more detailed description). In a com-
munication network, each linke can successfully transmit a message with probability
qe ∈ (0, 1). We want to select amost reliable path, i.e., a path between two given
nodes which maximizes the probability that none of its links fails. Links are owned by
selfish agents which are asked to report a (possibly uncorrect) probabilityq′e ∈ (0, 1).
We provide to a chosen linke a payment specified by a functionpe(·) if and only if link
e performed the transmission correctly. Each agent tries to maximizes theexpected
amount of money received.1 Hence,both the objective and the utility functions can
be expressed by means of the common “operator” ‘·’. The Most Reliable Path
(MRP) problem just described can be easily reduced to a utilitarian problem by con-
sidering the logarithms of both the optimization function and of the utility functions,
thus implying the existence of a truthful mechanism. It is then natural to ask whether
this is just “good chance”, or this problem (and others) has some “similarities” with
the class of utilitarian problems.

In this paper we address this question by defining a class of problems, termedcon-
sistentproblems (see Sect. 2), which admit truthful mechanisms. The main advantages
of our approach are that: (i) it provides an answer to the following question: which
mathematical properties guarantee the existence of truthful mechanisms? Moreover,
for a given problem, it is easy to see whether it satisfies these properties (while re-
ducing the problem to a utilitarian one may not be as simple as for theMRP); (ii)
it provides a more intuitive interpretation of the payments, e.g., for problems like the
MRP described above.

We defineVCGcmechanisms as a natural extension of the VCG mechanisms and
show that they are truthful for consistent problems. We then consider possible ex-
tensions of our result and provide both positive and negative answers depending on
which property we add/drop from the definition of consistent problems. In particular,
we identify four classes of problems:

Cvcgc
only . This class is a natural restriction of consistent problems. In particular, VCGc

mechanisms are the only truthful mechanisms for problems in this class (Theo-
rem 8).

Cvcgc
vp . This is a subclass of consistent problems. We prove that every problem in

this class admits a truthful VCGc mechanism which also satisfies thevoluntary
participationcondition (Theorem 10).

Cvcgc
none. This is a class of non-consistent problems in which the set of feasible solutions

dependson the private part of the input, thus not satisfying one of the constraints
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of the definition of consistent problem (see Constraint (1) in Def. 4). We show
that every VCGc mechanism for such a problem is not truthful (Theorem 15).

Cnone. This is a subclass ofCvcgc
none whose problems do not admit truthful mechanisms

(Theorem 20). As this class in non-empty (see Sect. 4.1), our assumption on the
set of feasible solutions is necessary (indeed, removing this assumption would
give asuperclassof Cnone).

Other problems to which we apply our results areα-Rent Task Scheduling
(see Sect. 3.2) andKnapsack (see Sect. 4.1).

α-Rent Task Scheduling is a variant of theTask Scheduling problem
considered in [13] obtained by modifying the (quasi-linear) utility functions. The
resulting problem is consistent, though straightforward reductions to a utilitarian prob-
lem do not seem to exist. This shows that the non-existence of an exact mechanism in
[13] is due to the “combination” of quasi-linear utilities with a non additive objective
function (i.e., the makespan). Finally, the problem does not admit a truthful mecha-
nism satisfying voluntary participation, thus implying thatCvcgc

vp is a proper subclass
of consistent problems.

ConcerningKnapsack, we consider three variants of this problem depending on
which part of the input is held by the agents (namely, the item profits, the item sizes, or
both). The corresponding versions belong toCvcgc

vp , Cvcgc
none andCnone, respectively. This

basic problem has applications to scheduling, resource allocation and to a problem of
web advertising [6].

Further related work. Green and Laffont [9] showed that for certain utilitarian
problems VCG mechanisms are the only truthful mechanisms. Nisan and Ronen [14]
considered the approximability ofNP-hard optimization problems viaVCG-based
mechanisms: these mechanisms are obtained from VCG ones by replacing an opti-
mal algorithmA with a (polynomial-time) non-optimal oneA′. Archer and Tardos
[3] considered so calledone-parameteragents: here the valuation functions factor as
vi(X, ti) = wi(X) · ti. The authors provided a technique which allows to obtain
truthful mechanisms(A, p) wheneverA satisfies a “monotonicity” property. To the
best of our knowledge this is the only technique other than the VCG one. All above
mentioned results apply to the case of quasi-linear utility functions only.

Organization of the paper. We present some basic definitions and notation in
Sect. 2. In Sect. 3 we provide the definition of consistent problem, VCGc mechanisms
and prove our main positive results. Sect. 3.1 deals with the voluntary participation
condition, while Sect. 3.2 contains some applications of our positive results. Finally,
we prove the negative results in Sect. 4 where we also apply these results to some of
the above mentioned problems. Conclusions and open problems are in Sect. 5. Due to
lack of space some details concerning the problems formulation and some proofs are
omitted (see also [12]).
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2. Preliminaries
Informally, in a mechanism design problem one can imagine that the inputI =

(IP , I) is split into a public and into a private part held byk agents. Public valuation
and utility functions express the agents’ preferences and how each agent “responds”
to incentives. We next provide a formal setting. Without loss of generality, we present
the definition for maximization problems.

Given any vectorI = 〈y1, . . . , yk〉 ∈ Θ1 × . . . × Θk, let I−i = 〈y1, . . . , yi−1,
yi+1, . . . , yk〉 and 〈I−i, xi〉 = 〈y1, . . . , yi−1, xi, yi+1, . . . , yk〉. Moreover, if I =
(IP , I), we let〈I−i, xi〉 = (IP , 〈I−i, xi〉).

Definition 1 A Mechanism Design Maximization (MDMax) problem is spec-
ified as follows:

Private instance.Each agentai has available aprivate input typeti ∈ Θi,
whereΘi denotes the type space of agentai which is public knowledge. Given
the part of the instanceIP which ispublic knowledge, IT = (IP , IT ) is the
private (or true) instancespecified by the true agents’ typesIT = 〈t1, . . . , tk〉.
Reported instance.Each agentai makes public a reported typeri ∈ Θi; then,
for IR = 〈r1, . . . , rk〉, thereported instanceIR = (IP , IR) is the input provided
to the algorithm.

In the following, we will often writeI = (IP , I), for a vectorI = (y1, . . . , yk) ∈
Θ1 × . . . × Θk to denote any possible input of the algorithm (i.e., any “re-
portable" instance) as opposed toIT andIR representing the specific private
and reported instances, respectively.
Feasible solutions.Given any instanceI = (IP , I), Φ(I) denotes the set of
feasible solutions, andΦ(IP ) =

⋃
I′∈Θ1×...×Θk

Φ(IP , I ′). The set of feasible
solutions does not depend on the private part of the input, i.e.,

∀IP ∀I ∈ Θ1 × . . .×Θk, Φ(IP , I) = Φ(IP ). (1)

Objective function.A functionµ(X, I) expresses the measure of a solutionX,
given any instanceI.
Valuation functions.For every agentai, a functionvi(X, ti) expresses theval-
uationof ai of a solutionX, given any valueti ∈ Θi. The functionvi(·, ·) is
public knowledge, while one of its arguments is not (namely, the typeti).

We say that a solutionX does not involve agentai if vi(X, yi) = v0
i , for a fixed

valuev0
i and for everyyi ∈ Θi. We assume thatv0

i is public knowledge and
that, for everyX, it is possible to decide whetherX does not involveai.
Agent payments and utility functions.For every agentai it is possible to define a
payment functionpi(·), representing some sort of incentive for agentai. Then, a
functionui(X, ti, Pi) expresses theutility of ai of a solutionX, given its (true)
type ti and givenpi(·) = Pi (this value represents how muchai benefits if a
solutionX is output andai receives a payment2 equal toPi). This function
depends only on the valuesvi(X, ti) andPi, and represents what agentai tries
to maximize.
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We use the symbolP 0 to denote the fact thatai receives no payment. In this
case, for everyX, we have thatui(X, ti, P

0) = vi(X, ti).
Goal. Find an optimal solution for the true instance, that is, a solutionX∗ ∈
Φ(IT ) such that

µ(X∗, IT ) = max{µ(X, IT ) | X ∈ Φ(IT )}. (2)

Observe that, because of Constraint (1), it is always possible to obtain a feasible
solution. However, our goal is to find an optimal one, whichdependson the agents’
types (i.e., the true instance). In order to solve aMDMax problem we need a suitable
combination of a payment scheme and an algorithm which guarantees that (i) no agent
has an incentive in misreporting her type and (ii) the algorithm, once provided with
the true instanceIT , returns an optimal solution for that. In particular, the usual
underlying assumption in mechanism design is that an agent misreports her type only
in the case this might improve her utility (see e.g. [15]).

Definition 2 (truthful mechanism) A mechanismfor a MDMax prob-
lem is a pairM = (A,P), whereA is an algorithm computing a solutionA(IR) and
P(IR) = 〈p1(IR), . . . , pk(IR)〉 is the payment scheme. A mechanismM = (A,P)
for a MDMax problem istruthful if, for all i,

∀I−i ∀ri 6= ti ui(A〈I−i, ti〉, ti, pi〈I−i, ti〉) ≥ ui(A〈I−i, ri〉, ti, pi〈I−i, ri〉).
Observe that truthful mechanisms guarantee that, for everyai, reportingri = ti
is the best strategy even when some other agents misreport their type (i.e.,I−i 6=
〈t1, . . . , ti−1, ti+1, . . . , tk〉).

Another relevant feature of a mechanism is that of guaranteeing that a truthfully
behaving agentai incurs in a utility which is not worse than the utility she would
obtain if not “participating in the game”, that is, if a solutionX not involving ai is
computed andai receives no payment (see Sect. 3.1):

Definition 3 (voluntary participation) A mechanismM = (A,P) for
a MDMax problem satisfies thevoluntary participation condition (VP)if

∀ai ∀I−i ui(A〈I−i, ti〉, ti, pi〈I−i, ti〉) ≥ v0
i .

Given an instanceI, for the sake of simplicity, we denote byI−i the instance
〈I−i,⊥〉, where⊥ 6∈ Θi is a “dummy" value which makes unfeasible every feasible
solution involving agentai. In the rest of the paper we consideroptimal mechanisms,
that is, mechanismsM = (A,P) that use an algorithmA computing an optimal
solution w.r.t. thereported instance. A truthful optimal mechanism provides a solution
for a MDMax problem: the truthfulness guarantees that the agents, being rational,
report their typesti and then algorithmA computes a solutionX∗ = A(IT ) satisfying
Eq. 2.

3. Truthful mechanisms for consistent problems
In this section we first introduce the class ofconsistent problems(Def. 4) and a

family of mechanisms for this class which we callVCGc mechanisms(Def. 5). We
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show that VCGc mechanisms are truthful for consistent problems (Theorem 6) and
prove that, under some natural assumptions, VCGc mechanisms are the only truthful
mechanisms for consistent problems (Theorem 8).

Definition 4 (consistent problem) A MDMax problem isconsistentif
(i) µ is a consistent objective function, i.e., for any instanceI = (IP , I), with I =
〈y1, . . . , yk〉, and for anyX ∈ Φ(I), it holds thatµ(X, I) =

⊕
i vi(X, yi), where

‘⊕’ is a suitable operator which enjoys the following properties: associativity, com-
mutativity and monotonicity in its arguments; (ii) the utility function is such that

∀ai ∀X ∈ Φ(IP ) ∀Pi ui(X, ti, Pi) = vi(X, ti)⊕ Pi.

The class of all consistent problems is denoted asconsistent.

Definition 5 (VCGc mechanisms) A (optimal) mechanism(A,P) for a con-
sistent problem is aVCGc mechanismif, for all i, there exists a functionhi(I−i) such
that, denotedµ−i(X, I) =

⊕
j 6=i vj(X, yj):

pi(I) = µ−i(A(I), I)⊕ hi(I−i). (3)

The following theorem generalizes the (proof of the) analogous result in [10] about
the truthfulness of VCG mechanisms for utilitarian problems (i.e., the case ‘⊕’=‘ +’).
Noticeably, it exploits Constraint (1) (see [12]).

Theorem 6 A VCGc mechanism for a consistent problem is truthful.

We next show that, under some natural assumptions, VCGc mechanisms are the
only truthful mechanisms for consistent problems.

Definition 7 (the class Cvcgc
only .) A consistent problemΠ belongs toCvcgc

only if
its operator enjoys the following properties: identity elementi⊕, inverse and strict
monotonicity,3 and the type spaces are complete, (i.e.,∀I, ∀i, {vi(·, yi) | yi ∈ Θi} =
{f : Φ(I) 7→ R}).

The proof of the following theorem is a non-trivial adaptation of the proof of a
similar result for (a subclass of) utilitarian problems in [9] (see [12]). However, our
result is stronger since it shows thateveryconsistent problem inCvcgc

only has essentially a
“unique” truthful mechanism: the VCGc mechanism in Def. 5, where the only degree
of freedom is on the definition of the functionhi(·).
Theorem 8 Let (A,P) be a truthful mechanism for a problemΠ ∈ Cvcgc

only . Then,
(A,P) is a VCGc mechanism forΠ.

3.1 The voluntary participation condition
In practical applications, agents have the freedom/right to put themselves out of

the “game” if the final mechanism outcome (i.e., the utility) turns out to be disad-
vantageous for them. For example, consider the case in which the valuationvi(X, ti)
represents a cost required toai in order to implement the solutionX andpi(IR) is
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the amount of money thatai receives for that. Agentai has the freedom to refuse the
payments and to not implement the solution, if the utility deriving fromvi(X, ti) and
pi(IR) is less than0 (i.e., the utility in case agentai does not perform any work nor
receives money).

Definition 9 (the class Cvcgc
vp .) A consistent problemΠ belongs toCvcgc

vp if
the operator enjoys the following properties: identity element, inverse and strict mono-
tonicity, and

∀ai ∅ 6= Φ(I−i) ⊆ Φ(I). (4)

The following theorem gives a sufficient condition for the existence of VCGc mecha-
nisms which satisfies VP (see Def. 3).

Theorem 10 Let Π be a consistent problem inCvcgc
vp and (A,P) be the VCGc

mechanism forΠ with hi(I−i) = µ−i(A(I−i), I−i)−1. Then(A,P) satisfies VP.

Proof. ConsiderX = A〈I−i, ti〉 andPi = pi〈I−i, ti〉, for anyI−i. SinceA(I−i) ∈
Φ(I−i), it holds thatµ(A(I−i), 〈I−i, ti〉) = µ−i(A(I−i), I−i) ⊕ v0

i . Moreover,
by Def.s 4 and 5,ui(X, ti, Pi) = vi(X, ti) ⊕ µ−i(X, 〈I−i, ti〉) ⊕ hi(I−i), and, by
associativity, monotonicity and existence of the inverse:

ui(X, ti, Pi) = µ(X, 〈I−i, ti〉)⊕
(
µ−i(A(I−i), I−i)−1 ⊕ (v0

i )−1 ⊕ v0
i

)

= µ(X, 〈I−i, ti〉)⊕ µ(A(I−i), 〈I−i, ti〉)−1 ⊕ v0
i . (5)

>From Condition 4 and from the optimality ofA, if follows that µ(X, 〈I−i, ti〉) ≥
µ(A(I−i), 〈I−i, ti〉). From the monotonicity of ‘⊕’, we obtainµ(X, 〈I−i, ti〉) ⊕
µ(A(I−i), 〈I−i, ti〉)−1 ≥ i⊕. This, Eq. 5, the monotonicity of ‘⊕’ yield ui(X, ti,-
Pi) ≥ v0

i . Hence the theorem follows. 2

3.2 Applications to non-utilitarian problems
We now provide two examples of non-utilitarian consistent problems whose opera-

tor is ‘⊕’= ‘·’ (the MRP problem) and ‘⊕’= ‘min’ (the α-Rent Task Scheduling
problem).

The Most Reliable Path (MRP) problem. Before introducing theMRP
problem, let us consider a general framework in which a truthful mechanism has to be
designed on a directed weighted graphG = (V, E,w) that has an edge weightwe ∈ Θ
associated with each edgee ∈ E. We are givens, t ∈ V , called the source and the
destination, respectively The goal is to find a path froms to t which maximizes the
product of the edge weights. Each edgee is owned by a distinct selfish agentae

4

which knows the weightwe ∈ Θ (i.e., her type). In the following, we will refer to this
problem as aLongest Multiplicative Path problem (LMP[Θ]).

The LMP[Θ] problem can be formalized as a consistent problem whenever the
valuation functionsve(·) and the utility functionsue(·) satisfy

ve(π, ye) =
{

v0
i = 1 if e is not on the pathπ,

ye otherwise,
(6)
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andue(π, we, Pe) = ve(π, we) ·Pe. Since the set of feasible solutions depends ont the
topology of the graph only, for 2-connected graphs,5 Constraint 4 is met. Moreover,
for everyΘ ⊆ R+, the standard product operator is strictly monotone, thus implying
thatLMP[Θ]∈ Cvcgc

vp . Hence, by Theorem 10 we obtain the following:

Corollary 11 For everyΘ ⊆ R+, there exists a truthful mechanism(A, p) for
LMP[Θ] which, for 2-connected graphs, also meets VP. In this case, for everye ∈ E,
if X = A(IT ) andX−e = A(IT−e):

pe(I) =
µ−e(A(I), I)

µ−e(A(I−e), I−e)
(7)

ue(X, te, pe(IT )) =
µ(X, IT )

µ−e(X−e, IT−e)
. (8)

In the following we apply the above result to theMRP problem discussed in
Sect. 1. In particular, the message is forwarded from one node to the next one un-
til either (i) the message reaches the destinationt or (ii) the link fails. In the latter
case, the transmission is lost and a “dummy” message is forwarded throughout the
selected path in place of the original one.

In order to satisfy Eq. 6, we use the following rule for the agents’ payment. If
edgee is not on the chosen path, then the corresponding agent receives a payment
equal toPe = 1. Moreover, an agent in the selected path is rewarded after (and
only if) her link hassuccessfullyforwarded the message. Hence, thetrue agent’s
expected utility isqePe. It is easy to see that theMRP problem is theLMP[(0, 1)]
problem. Corollary 11 implies the existence of a truthful mechanism(A,P) which, if
at least two disjointst-paths exists, also meets VP. In this case, Eq.s 7 and 8 yield the
following intuitive interpretation of payments and of utilities, respectively:

pe(IT ) =
Pr[no link in π fails| e does not fail]

Pr[no link in π−e fails]

ue(π, qe, pe(IT )) =
Pr[no link in π fails]

Pr[no link in π−e fails]
,

whereπ is the bestst-path andπ−e denotes the bestst-path not containinge.

>From Corollary 11 it is possible to obtain analogous results for theArbitrage
problem, which is discussed in [12].

The α-Rent Task Scheduling problem. We are givenk tasks which need
to be allocated ton machines, each of them corresponding to one agent. Lettij denote
the minimum amount of time machinei is capable of performing taskj and letXi be
the the set of tasks allocated to agentai. The goal is to minimize the makespan, that
is, the maximum, over all machines, completion time. The type of agenti is given by
ti = 〈ti1, . . . , tik〉, thus implyingIT = 〈t1, . . . , tn〉, IP = 〈k, n〉 andIT = (IP , IT ).
The set of feasible solutionsΦ(I) is the set of all partitionsX = X1, . . . , Xn of
the tasks, whereXi denotes the tasks allocated to agentai. For anyI, we define
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vi(X, ti) = −∑
j∈Xi

tij , that is, the completion time of machinei. Agentai is not
involved in the solutionX if Xi = ∅. In this case,vi(X, ·) = 0 = v0

i .
We consider the following variant of theTask Scheduling problem defined in

[13]. An assignment has to be computed according to the reported types. Each ma-
chinei that has been selected (i.e.,Xi 6= ∅) is rentedfor the duration required to per-
form the tasks assigned to it. The corresponding agent must then receive an amount
of moneynot larger thanα−∑

j∈Xi
tij = α + vi(X, ti), whereα is a fixed constant

equal for all machines. Incentives are provided by defining, for each machine/agent,
a maximumpaymentMi that the machinei will receive if used. In particular, each
rented machine is then payed theminimumbetweenMi andα + vi(X, ti).

The utility of an agenti is naturally defined as the amount of money derived from
the renting of her machine, that is,min{α+ vi(X, ti),Mi}. By lettingPi := Mi−α,
the previous quantity can be rewritten as

min{α + vi(X, ti),Mi} = α + min{vi(X, ti), Pi}.
To formalize the problem as a consistent problem with operator ‘⊕’=‘ min’ it suf-

fices to defineui(X, ti, Pi) = min(vi(X, ti), Pi), and to observe thatµ(X, I) =
maxn

i=1−vi(X, yi) = minn
i=1 vi(X, yi). Hence Theorem 6 implies the following:

Corollary 12 Theα-Rent Task Scheduling problem is consistent. Hence,
it admits a truthful mechanism.

The fact that the only difference between theα-Rent Task Scheduling prob-
lem and theTask Scheduling problem in [13] is on the utility function provides
an interesting comparison, since in [13] the authors proved that no exact (or even
2-approximate non-polynomial-time) truthful mechanism exists. Corollary 12 shows
that this is due to the fact that the utility functions are quasi-linear.

Remark 3.1 (on the voluntary participation) Observe that no mech-
anism for theα-Rent Task Scheduling problem can guarantee the VP condition.
Indeed, it suffices to consider instances for whichmin{tij} > α, in which case the util-
ities are always negative. Hence,α-Rent Task Scheduling 6∈ Cvcgc

vp .

4. Impossibility results
In this section we investigate extensions of our positive result (Theorem 6) to prob-

lems obtained by removing Constraint (1) in the definition ofconsistent:

Definition 13 (relaxed consistent problem) A problem is arelaxed
consistent problemif it satisfies all constraints of Def. 1 except for Constraint (1), as
well as the two items in Def. 4. The class of all relaxed consistent problems is denoted
asrelaxed consistent.

In Sect.s 4.1 and 4.2 we define two subclasses ofrelaxed consistent and show that
problems in these two classes do not admit truthful VCGc mechanisms (Theorem 15)
and truthful mechanisms (Theorem 20), respectively. We also prove that the latter
class in included in the former (Theorem 20).
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4.1 A class with no truthful VCGc mechanisms
Intuitively speaking, we next consider a class of problems for which some non-

feasible solutionX̂ has a measure strictly better than any feasible solution. Moreover,
such an unfeasible solution can be output when reporting a false inputÎ, that is,X̂ =
A(Î) ∈ Φ(Î). Formally, we have the following:

Definition 14 (the class Cvcgc
none.) A problemΠ is said to be in the classCvcgc

none

if it is relaxed consistent and the following holds: (i) the operator ‘⊕’ satisfiesstrict
monotonicity; (ii) there existi, Ĩ = 〈ỹ1, . . . , ỹk〉 and ŷi ∈ Θi (yi 6= ŷi) such that, for
Ĩ = (IP , Ĩ) andÎ = 〈I−i, ŷi〉, it holds that

A(Î) 6∈ Φ(Ĩ) andµ(A(Î), Ĩ) > µ(A(Ĩ), Ĩ). (9)

Theorem 15 No problemΠ ∈ Cvcgc
none admits a truthful VCGc mechanism.

Proof. Let (A,P) be a VCGc truthful mechanism forΠ and beX̃ = A(Ĩ) andX̂ =
A(Î). Then:ui(X̃, ỹi, pi(Ĩ)) = (by Def.s 4, 5)vi(X̃, ỹi) ⊕ (µ−i(X̃, Ĩ) ⊕ hi(Ĩ−i))
= (by associativity of ‘⊕’ and by Def. 4)µ(X̃, Ĩ) ⊕ hi(Ĩ−i) < (by Eq. 9 and strict
monotonicity of ‘⊕’) µ(X̂, Ĩ) ⊕ hi(Ĩ−i) = (by Def.s 13, 14)ui(X̂, ỹi, pi(Î)). This
contradicts the truthfulness of(A,P). 2

In the following we provide two examples of problems in the classCvcgc
none which,

by Theorem 15, do not admit a truthful VCGc mechanism:Knapsack and the
2nd Shortest Path.

The Knapsack problem. We consider the so called variant 0-1Knapsack of
the classical optimization problem, which can be described as follows. We are given
a set ofn items{1, . . . , n}, each one characterized by aprofit πi and asizeσi. The
goal is to find a set of items such that its total occupancy does not exceed a given
capacityB and the total profit is maximized. Hence, the set of feasible solutions is
Φ(I) = {X ∈ {0, 1}n | ∑n

i=1 Xiσi ≤ B} and the total profit of a solutionX ∈ Φ(I)
is given byµ(X, I) =

∑n
i=1 Xiπi.

Each itemi is associated with an agentai that holds a part of the instance and
derives from the outcome a utilityui(X, ti, Pi) = Pi + vi(X, ti), wherevi(X, yi) =
Xiπi. Depending on how the private part of the instance is defined we distinguish
the following three problem versions, which have have a natural application to the use
of a shared communication channel of limited capacity and to a problem of “selling”
part of a web page (typically, a marginal strip of fixed width/height) for putting some
advertisements (see [6] for a description of the model):

Knapsack[π], where each agentai only holds the profitπi = ti associated
with each itemi, whereas every sizeσi is public knowledge.
Knapsack[σ], where each agentai only holds the sizeσi = ti associated with
each itemi, whereas every profitπi is public knowledge.
Knapsack[π, σ] where each agentai holds both the profitπi and the sizeσi

associated with each itemi, that is,ti = 〈πi, σi〉.
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It is worth noticing that onlyKnapsack[π] meets Constraint (1), as sizes are pub-
lic knowledge andΦ(I) is constant. Then, this proves Theorem16. On the contrary,
Knapsack[σ] andKnapsack[π, σ] satisfy Def. 4 except for Constraint (1). In these
case we can state Theorem17.

Theorem 16 Knapsack[π] ∈ Cvcgc
vp . Hence, it admits a truthful mechanism

which also meets VP.

Theorem 17 Knapsack[σ], Knapsack[π, σ] ∈ Cvcgc
none. Hence, they do not ad-

mit a truthful VCGc mechanism.

The 2nd Shortest Path problem. Let us consider an undirected weighted
graphG = (V,E, w) and two nodess, t ∈ V . The objective is to find a path whose
length is minimal among allst-paths that have no minimal length inG. More formally,
for any instanceI = G, if Φst is the set of allst-paths in(V, E) andX∗

1 (I) ⊆ Φst

is the subset of the shortestst-paths,Φ(I) = Πst(I) \ X∗
1 (I). Similarly to the

Shortest Path problem mentioned in [13], the valuation function of the agent
owing edgee is equal to

ve(π, IR) =
{ −re if e ∈ π,

0 otherwise.

Utilities are quasi-linear and the objective function is the total weight of the path, that
is,

∑
e∈π re. By letting µ(π, IR) =

∑
e∈π −re, and by observing thatµ(π, IR) =∑

e∈π ve(π, IR), we can easily prove the following result:

Theorem 18 The2nd Shortest Path problem is inCvcgc
none. Hence, It does not

admit a truthful VCGc mechanism.

In the next section we will strengthen the results of Theorem 17 and of Theorem 18.

4.2 A class with no truthful mechanisms
We next provide a general technique to prove the non-existence of truthful mecha-

nisms for a given problem. We will then apply this result to theKnapsack[π, σ] and
to the2nd Shortest Path problems and show that the reason why VCGc mecha-
nisms fail is not due to its weakness.

Definition 19 (the class Cnone.) A problemΠ is said to be in the classCnone

if it relaxed consistent and the following holds: (i) the operator ‘⊕’ satisfies strict
monotonicity; (ii) there existi, ν, Ĩ = 〈ỹ1, . . . , ỹk〉 and ŷi ∈ Θi (yi 6= ŷi) such that,
for Ĩ = (IP , Ĩ) andÎ = 〈Ĩ−i, ŷi〉, it holds that

A(Î) 6∈ Φ(Ĩ) ∧ vi(A(Î), ỹi) > vi(A(Î), ŷi) ∧
vi(A(Î), ·) 6= ν ∧ vi(A(Ĩ), ·) = ν. (10)

The classCnone enjoys the properties stated by the following theorem (see [12]):
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Theorem 20 The classCnone is included inCvcgc
none. Moreover, no problemΠ ∈

Cnone admits a truthful mechanism.

The next result show that, in the case of the2nd Shortest Path andKnap-
sack[π, σ] problems, VCGc mechanisms do not fail because inappropriate. Indeed,
it can be proved that:

Theorem 21 Both the2nd Shortest Path and theKnapsack[π, σ] prob-
lems are inCnone. Hence, none of them admits a truthful mechanism.

Remark 4.1 (necessity of Constraint (1)) Observe that if we remove
Constraint (1) from the definition of consistent problems, then we obtain the class
relaxed consistent (Def. 13). Theorem 21 implies that∅ 6= Cnone ⊆ relaxed con-
sistent. Hence, Constraint (1) is necessary for guaranteeing the existence of truthful
mechanisms.

5. Conclusions and open problems
In the following figure we summarize the results obtained in this work. In par-

ticular, we have isolated several classes of problems involving selfish agents which
are defined according to some mathematical properties. The inclusions mostly follow

utilitarian

MDMax

relaxed consistent

TRUTHFUL MECHANISMS

VCGc (Thm 6)

no VCGc (Thm 15)

none (Thm 20)

only VCGc (Thm 8)

VCG [18, 4, 10]

only VCG [9]

PROBLEMSCLASSES

Cvcgc
none

Cnone

Cvcgc
only

Cvcgc
vp

2nd Shortest Path (Thm 21)

Knapsack[π, σ] (Thm 21)

Knapsack[σ] (Thm 17)

Knapsack[π] (Thm 16)

Task Scheduling [13]

α-Rent Task Scheduling

Most Reliable Path

Arbitrage

consistent

from the definitions, except for the result of Theorem 20. Moreover, the results on
the α-Rent Task Scheduling problem and the fact thatCnone 6= ∅ imply that
Cvcgc

vp ( consistent ( relaxed consistent. Since theTask Scheduling prob-
lem in [13] can be formulated as aMDMax problem, the negative results in [13]
also implies thatconsistent ( MDMax. It would be interesting to prove analogous
separation results among the classes. For instance, ifKnapsack[σ] had a truthful
mechanism, then we would obtainCnone  Cvcgc

none. Combinatorial auction is a clas-
sic utilitarian problem (see e.g. [14]) which admits VCG mechanisms only. If would
be interesting to find anon-utilitarian problem inCvcgc

only . ComparingCvcgc
only andCvcgc

vp

would be also worthwhile. Investigating classes for which mechanisms that use non-
optimal algorithmsA remain truthful is an important issue. Interestingly, Theorem 6
also holds when algorithmA, though non-optimal, ismaximal in its range(see [14]),
thus generalizing one of the results in [14] for utilitarian problems.
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Notes
1. We assume that the costs for transmitting are negligible, say equal0.

2. The term ‘payment’ does not necessarily mean money as it actually denotes any form of incentive.

3. The inverse ofx is denoted byx−1 and satisfiesx⊕x−1 = i⊕. We say that an operator⊕ satisfies
strict monotonicityif for everya,a′ andb, with a < a′, it holds thata⊕ b < a′ ⊕ b.

4. The existence of truthful mechanisms easily extends to a more general setting where each agent
owns multiple edges.

5. If the graph is not 2-connected then the problem breaks down to independent subproblems (2-
connected components). In this case, it is easy to see that the VP condition cannot be fulfilled.
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