251

AN O(nlog®n) ALGORITHM FOR A SINK LOCA-
TION PROBLEM IN DYNAMIC TREE NETWORKS

Satoko Mamada, Takeaki Uno? Kazuhisa Makind, and Satoru Fujishige

Ibivision of Mathematical Science for Social Systems,
Graduate School of Engineering Science, Osaka University

mamada@inulab.sys.es.osaka-u.ac.jp, makino@sys.es.osaka-u.ac.jp

2Foundations of Informatics Research Division, National Institute of Informatics
uno@nii.jp

3Research Institute for Mathematical Sciences, Kyoto University
fujishig@kurims.kyoto-u.ac.jp

Abstract In this paper, we consider a sink location in a dynamic network which consists
of a graph with capacities and transit times on its arcs. Given a dynamic network
with initial supplies at vertices, the problem is to find a verteas a sink in the
network such that we can send all the initial supplies &3 quickly as possible.

We present aiD(nlog® n) time algorithm for the sink location problem in a
dynamic network of tree structure, wheneis the number of vertices in the
network. This improves upon the existififn?)-time bound. As a corollary, we

also show that the quickest transshipment problem can be sol&ghitog® n)

time if a given network is a tree and has a single sink. Our results are based on
data structures for representing tables (i.e., sets of intervals with their height),
which may be of independent interest.

Keywords:  Dynamic flows, location problem, tree networks.

1. Introduction

We consider dynamic networks that include transit times on arcs. Eaah arc
has the transit time(a) specifying the amount of time it takes for flow to travel
from the tail to the head af. In contrast to the classicataticflows, flows in
a dynamic network are calletyynamic In the dynamic setting, the capacity of
an arc limits the rate of the flow into the arc at each time instance. Dynamic
flow problems were introduced by Ford and Fulkerson [6] in the late 1950s (see
e.g. [5]). Since then, dynamic flows have been studied extensively. One of the
main reasons is that dynamic flow problems arise in a number of applications
such as traffic control, evacuation plans, production systems, communication
networks, and financial flows (see the surveys by Aronson [2] and Powell,
Jaillet, and Odoni [14]). For example, for building evacuation [7], vertices

(c) 2004 IFIP



252

v € V model workplaces, hallways, stairwells, and so on, and ares A
model the connection link between the adjacent components of the building.
For an arax = (v, w), the capacity:(a) represents the number of people who
can traverse the link correspondingdager unit time, and-(a) denotes the
time it takes to traverse from v to w.

This paper addresses the sink location problem in dynamic networks: given
a dynamic network with the initial supplies at vertices, find a vertex, called a
sink, such that the completion time to send all the initial supplies to the sink
is as small as possible. In this setting of building evacuation, for example, the
problem models the location problem of an emergency exit together with the
evacuation plan for it.

Our problem is a generalization of the following two problems. First, it can
be regarded as a dynamic flow version of the 1-center problem [13]. In partic-
ular, if the capacities are sufficiently large, our problem represents the 1-center
location problem. Secondly, our problem is an extension of the location prob-
lems based on flow (or connectivity) requirements in static networks, which
have received much attention recently [1, 10, 16].

We consider the sink location problem in dynartriee networks. This is
because some production systems and underground passages form almost-tree
networks. Moreover, one of the ideal evacuation plans makes everyone to be
evacuated fairly and without confusion. For such a purpose, it is natural to
assume that the possible evacuation routes form a tree. We finally mention
that the multi-sink location problem can be solved by solving the (single-)sink
location problem polynomially many times [12]. It is known [11] that the
problem can be solved in(n?) time by using a double-phase algorithm, where
n denotes the number of vertices in the given network. We show that the
problem is solvable i) (n log? n) time.

Our algorithm is based on a simple single-phase procedure, but uses so-
phisticated data structures for representing taples., sets of time intervals
[01,62) with their heightg(6,) to perform three operation&ddTable (i.e.,
adding tables)Shift Table(i.e., shifting a table), an@eil-Table(i.e., ceiling
a table by a prescribed capacity). We generalize interval trees (standard data
structures for tables) by attaching additional parameters and show that using
the data structures, we can efficiently handle the above-mentioned operations.
Especially, we can merge tablgsin O((3"; d;) log?(3", d;)) time, where we
say thatablesg; are mergedf g;'s are added into a single tabjeafter shifting
and ceiling tables are performed, afyddenotes the number of intervalsgn
This result implies ar(n log? n) time bound for the location problem. We
mention that our data structures may be of independent interest and useful for
some other problems which manage tables.

We remark that our location problem for general dynamic networks can be
solved in polynomial time by solving the quickest transshipment problem

(c) 2004 IFIP



253

times. Here the quickest transshipment problem is to find a dynamic flow
that zeroes all given supplies and demands within the minimum time, and is
polynomially solvable by an algorithm of Hoppe and Tardos [8]. However,
since their algorithm makes use of submodular function minimization [9, 15]
as a subroutine, it requires polynomial time of high degree. As a corollary of
our result, this paper shows that the quickest transshipment problem can be
solved inO(nlog? n) time if the given network is a tree and has a single sink.

The rest of the paper is organized as follows. The next section provides some
preliminaries and fixes notation. Section 3 presents a simple single-phase algo-
rithm for the sink location problem, and Section 4 discusses our data structures
and shows the complexity of our single-phase algorithm with our data struc-
tures. Finally, Section 5 gives some conclusions.

Due to the space limitations, some proofs have been omitted.

2. Definitions and Preliminaries

Let T = (V,E) be a tree with a vertex séf and an edge sef. Let
N = (T,c,7,b) be a dynamic flow network with the underlying undirected
graph being a tre@’, wherec : F — R is a capacity function representing
the least upper bound for the rate of flow through each edge per unit time,
7 : E — R, atransit time function, and : V' — R, a supply function.
Here,R denotes the set of all nonnegative reals and we assume the number
of vertices inT is at least two.

This paper addresses the problem of finding a sigkl” such that we can
send given initial supplie&(v) (v € V' \ {t}) to sinkt as quickly as possible.
Suppose that we are given a sihlkn 7. Then,T is regarded as an in-tree
with roott, i.e., each edge df is oriented toward the roet Such an oriented
tree with roott is denoted byl'(t) = (V, E(t)). Each oriented edge iA/(t)
is denoted by the ordered pair of its end vertices and is called an arc. For
each edgqu,v} € E, we writec(u,v) andr(u,v) instead ofe({u,v}) and
T({u,v}), respectively. For any arc E(t) and any¥ € R, we denote by
fe(0) the flow rate entering the arcat timef which arrives at the head efat
time 6 + 7(e). We call f.(0) (e € E(t), § € R,) acontinuous-time dynamic
flow in T'(v*) (with a sinkv*) if it satisfies the following three conditions,
whered ™ (v) andd~(v) denote the set of all arcs leavingand enteringy,
respectively.

(a) (Capacity constraints): For any are E(t) andf € R,

0 < fe(0) < c(e). 1)

(b) (Flow conservation): Foranye V \ {v*} and® € R,

(c) 2004 IFIP



254

> / fe(6)d6 — Z/ fo(0 = 7(e))dd < b(v).  (2)

e€dt(v) e€d—(v)

(c) (Demand constraints): There exists a tihe R such that

3 / fo(0 — r(e))do -3 / 1.0 S ). @)

ecd— (v*) e€dt (v* veV\{v*}

As seen in (b), we allow intermediate storage (or holding inventory) at each
vertex. For a continuous-time dynamic flgfylet 6y be the minimum time
satisfying (3), which is called theompletion time for f. We further denote
by C(v*) the minimumé@; among all continuous dynamic flowsin 7'(v*).

We study the problem of computing a sink € V' with the minimumC'(v*).

This problem can be regarded as a dynamic version of the 1-center location
problem (for a tree) [13]. In particular, (v, w) = 400 (a sufficiently large

real) for each edg¢v, w} € E, our problem represents the 1-center location
problem [13].

We remark that dynamic flows can be restricted to those having no interme-
diate storage without changing optimal sinks of our problem (see discussions
in [6, 8, 11], for example).

3. A Single-Phase Algorithm

This section presents a simpl®n?) algorithm with a single phase. Be-
cause of the simplicity, it gives us a good basis for developing a faster algo-
rithm. In fact, we can construct ad(n) algorithm based on this framework,
which is given in the next section.

The algorithm computes two tableAtriving Table A, and Sending Table
S, for each vertex» € V. Let us assume that a simks given for a while, in
order to explain them. Arriving Tabld, represents the sum of the flow rates
arriving at vertexv as a function of timé, i.e.,

S fel0—T(e) +mp(v), (4)

e€E(t):e=(u,v)

where f.() = 0 holds for anye € E(t) and§ < 0, andng(v) = %
if 0 < 6 < A, otherwise 0. HereA denotes a sufficiently small positive
constant. Intuitivelyy)y(v) denotes the initial supply at Sending Table5,,
represents the flow rate leaving verteas a function of timé, i.e.,

f(v,w)(e)v (5)

where(v, w) € E(t).

(c) 2004 IFIP



255

Let us consider a table : R, — R, , which represents the flow rate in
timed € R,. Here, we assumg(f) = 0 for § < 0. Since our problem can
be solved by sending out as much amount of flow as possible from each vertex
toward an optimal sink (which will be computed), we only consider the table
g which is representable as

0 if 6 < 6,
9(9) = 9(91) if Qi < 0 < 0i+1 fori = 17...7]4;_ 1 (6)
0 if 0> 6,

wheref; < 0,11 andg(0;) # g(0;+1) fori = 1,...,k. Thus, we represent
such tableg by a set of intervals (with their height), i.e.,

((=00,01),0), ([0:,0i11),9(0:) (i=1,2,---,k), (7)

wherefy 1 = oo andg(6y) = 0.

Intuitively, our single-phase algorithm first constructs Sending Tabler
each leafv to sendb(v) to its adjacent vertex. Then the algorithm removes a
leafv* from 7" such that the completion time 6, is the smallest, sinc€ has
an optimal sink other thas*. If some vertexo becomes a leaf of the resulting
treeT’, then the algorithm computes Sending Tableto send all the supplies
that have already arrived atto an adjacent vertex(v) of the resulting treq’,
by using Sending Tables for the vertices# p(v)) that are adjacent to in
the original tree. The algorithm repeatedly applies this procedufeuwtil T’
becomes a single verteéxand outputs such a vertéxas an optimal sink.
Algorithm SINGLE-PHASE
Input: A tree network\ = (T' = (V, E), ¢, 7, b).

Output:  An optimal sink¢ that has the minimum completion ting&(¢) among all vertices of
T.

Step 0: LetW :=V, and letL be the set of all leaves @f. For eachv € L, construct Arriving
Table A,.

Step 1: For eachv € L, construct fromA, Sending TableS,, to go through(v, p(v)), where
p(v) is a vertex adjacent to in 7. Compute the tim@ime&(v, p(v)) at which the flow
based orf, is completely sent tp(v).

Step 2: Compute a vertex™ € L minimizing Time&(v, p(v)), i.e., Timgv™, p(v*))= minycr,
Time(v,p(v)). LetW := W\ {v*} andL := L\ {v*}.

If there exists a leaf of T'[W] such that is not contained irL,
then: (1)LetL := LU {v}.

(2) Construct Arriving Tabled,, from the initial supplyne (v) and Sending
TableS,, for the verticesw that are adjacent toin 7" and have already
been removed froril.

(3) Compute fromA, Sending Table5,, to go through(v, p(v)) wherep(v)
is a vertex adjacent toin T'[W], and computdime(v, p(v)).

Step 3: If |W| = 1, then output € W as an optimal sink. Otherwise, return to Step 2. O

HereT'[W] denotes a subtree @finduced by a vertex sét’. Note thatp(v)’s
in Steps 1 and 2 are uniquely defined, sinteare leaves of [IV].

(c) 2004 IFIP



256

We then have the following lemma, though we skip the proof.
LEMMA 1 AlgorithmSINGLE-PHASE outputs an optimal sink |

If we construct Arriving and Sending Tables explicitly, each taplean
be computed in time linear in the total number of intervals in the tables from
which g is constructed. Since the number of intervals in each table is linear in
n,t Algorithm SINGLE-PHASE requiresO(n?) time. In Section 4, we present
a method to represent these tables implicitly, and develdp(ariog? n) time
algorithm for our location problem.

4. Implicit Representation for Arriving and Sending Tables

Since AlgorithmSINGLE-PHASE requiresd(n?) time if explicit represen-
tations are used for tables, we need sophisticated data structures which can be
used to represent Arriving/Sending Tabiewplicitly. We adopt interval trees
for them, which are standard data structures for a set of intervals. Note that
SINGLE-PHASE only applies to tablesl, and/orS, the following three basic
operations:Add-Table(i.e., adding tables)ghift-Table(i.e., shifting a table),
andCeil-Table(i.e., ceiling a table by a prescribed capacity). It is known that
interval trees can efficiently handle operatigxdd-Tableand Shift-Table(see
Section 4). However, standard interval trees cannot efficiently handle operation
Ceil-Table This paper develops new interval trees which efficiently handle all
the three operations.

Data Structures for Implicit Representation

This section explains our data structures for representing tables which are
obtained from interval trees by attaching several parameters to handle the three
operations efficiently. Leg be a table represented as

I; = ([01'7914-1)’9(01')) (i:O,l,'-~,k), (8)

wherefy = —oo, 011 = +o0, andg(bp) = g(6x) = 0,2 and let BT, de-
note a binary tree fog. We denote the root by®” and the height o3T by
heigh{BT'). The binary treeBT, has an additional parametgy,,. to repre-
sent how mucly is shifted right. This,.s. is used for operatioshift-Table
by updatingtp,se tO tpese + 11, Wherep denotes the time to shift the table
right. Moreover, each nodein BT, has five nonnegative parametbese ),
ceil(z), he(x), t"(z), andt!(z) with t!(z) < t"(z), and each leaf has(z)
in addition, where these parameters will be explained later. Adeafcalled
activeif t/(z) < ¢"(z) anddummyotherwise. The time intervals of a talje
correspond to the active leaves BT, bijectively. We denote by#(BT') the
number of active leaves @7

(c) 2004 IFIP



257

Initially (i.e., immediately after constructingg7’, by operationMAKE-
TREE given below), BT, contains no dummy leaf and hence there exists a
one-to-one correspondence between the time intervalsotl leaves of37,.
Moreover, for each leaf corresponding td; in (8), we havet!(z) = 6;,
t"(x) = 0iy1, base(z) = g(6;) andceil(x) = 400, and for each internal
nodez, t'(z)= MiNye 1.eaf (z) t'(y), t"(x)= MaXye [eaf () T (Y), base(z) = 0
andceil(z) = 4o00. Here, Leaf () denotes the set of all leaves which are
descendants af. Namely,t! () andt"(z), respectively, represent the start and
the end points of the interval correspondingit@ndbase(x) andceil(x), re-
spectively, represent the flow rate and the upper bound for the flow rate in the
time interval corresponding to.

Operation MAKETREE (g: table)

Step 1: Lettpase := 0.

Step 2: Construct a binary balanced tré&¥; whose leaves; correspond to the time interval
I, of g in such a way that the leftmost leaf corresponds to the first intdgvahe next
one corresponds to the second interfaland so on.

Step 3: For each leaf; corresponding to interval, = [0;, 0;+1), base(x) := g(0;), t'(x) :=
0; andt”(x) = 91'4,_1.

Step 4: For each internal node, base(z) := 0, andt' (z) := minge reaf () t'(y) andt” (z) =
maXyELeaf(z) t" (y)

Step 5: For each node, ceil(z) := +oo0.

Step 6: For each leaf, sete(x), and for each node, seth.(z), wheree(z) andh.(x) shall
be explained later. |

We can easily compute a tabjédrom BT, constructed b\MIAKETREE. It
should also be noted that a binary trB&’, is not unique, i.e., distinct trees
may represent the same taple

As mentioned in this sectioghift-Tablecan easily be handled by updating
trase- WWe now consideAdd-Tablei.e., constructing a tablg by adding two
tablesg; andg., where we regard an addition kftables as — 1 successive
additions of two tables. Let us assume tHdtBT,,) > #(BT,,), that is,g
has at least as many intervalsg@s Our algorithm construct®87, by adding
allintervals (corresponding to active leaves)zif,, one by one ta37,,. Each
addition of an interval[6,, 62), c) to BT,,, denoted byApD(BT7; 01,602, ¢),
can be performed as follows.

We first modify BT, to ﬁgl that has (active) leaves andy such that
t'(z) = 6; andt"(y) = 6, if there exist no such leaves. Then we add an
interval ([01, 62), ¢) to the resultingETgl. One of the simplest way is to add

c to all leaves ofETg1 such that the corresponding intervals are included in
[01,62). However, this take®)(n) time, sinceBT,, may haveO(n) such
intervals. We therefore addonly to their representatives.

Note that the time intervdb,, 62) can be represented by the union of dis-

joint maximal intervals inETgl, i.e., the set of incomparable nodesﬁgl,

(c) 2004 IFIP



258

denoted byep(61, 62). We thus updatéase of Efgl as follows
base(x) := base(x) + ¢ forall z € rep(0;,62). 9)

We remark that this is a standard technique for interval tree. By successively
applying this procedure to new interval trﬁg1 and each of the remaining
intervals inBTy,, we can construcBT, with g = g1 + go.

For an interval treeBT" and an active leat of BT, lety;(= x), y2, - -,
ys(= rBT) denote the path from to the rootrB7. The procedure given
above shows that the height of an active leaépresenting the flow rate of the
corresponding interval can be represented as

= i base(y;). (10)
i=1

OperationADD(B 91,01,92, c) can be handled i®(heigh{ BT, )) time, since
|rep (01, 02)| < 2height (BTy, ). This means thaBT, can be constructed from
BT, and BTy, in O (#(BTgQ) logn) time by balancing the tree after each
addition. Moreover, operationsdd Tablein Algorithm SINGLE-PHASE can

be performed irO(n log? n) time in total, since we always add a smaller table
to alarger one (see Section 4 for the details). TAdd Tablecan be performed
efficiently.

However, operation€eil-Table in Algorithm SINGLE-PHASE require ©
(n?) time in total, since the algorithm contai@gn) Ceil-Table each of which
requiresO(n) time, even if we use interval trees as data structures for tables.
Therefore, when we boun8T" by a constant, we omit modifyingtl, t", and
base, and kee aSceil(rBT) = c. Clearly, this causes difficulties to overcome
as follows.

First, h(z) in (10) does not represent the actual height any longer. Roughly
speaking, the actual height iésif ¢ < h(z), andh(z), otherwise. We call
h(z) the tentative heighof z in BT, and denote by:(z) the actual height
of z. Let us consider a scenario that an interyéi, 62), ¢) is added toBT
after bounding it bye. Let x be an active leaf such that (i) the corresponding
interval is contained iff;, 62) and (ii) the actual height is immediately after
boundingBT by c. Then we note that the actual heightiofs ¢ + ¢’ after the
scenario, which is different from bofi(z) andc. To deal with such scenarios,
we updateceil to compute the actual heigﬁ(x) efficiently (See more details
in the subsequent sections). The actual heiqlnb can be computed as

h(z) = h(x) — yepaftrhl%cxrBT) ( Z base(z ) —ceil(y)}, (11)
z€path(z,y)

wherepath(z, y) denotes the path fromto y. Intuitively, for a nodeyy, in BT,
ceil (y) represents the upper bound of the height of active leaved.eaf (y1.)

(c) 2004 IFIP



259

within the subtree o3T whose root igj;. Thus> ¥ base(y;) — ceil (yx) has
to be subtracted from the heightx) if Zle base(y;) — ceil(yx) > 0, and
the actual heighfz(x) is obtained by subtracting their maximum. Note that
h(x) = h(z) holds for all active leaves of a tree constructed By AKETREE.

We next note that there exists no one-to-one correspondence between active
leaves inBT' and time intervals of the table th&1" represents, if we just set
ceil(rBT) = ¢. In this case, the table is updated too drastically to efficiently
handle the operations afterwards. Thus by modifyBi§ (as shown in the
subsequent subsections), we always keep the one-to-one correspondence, i.e.,
the property that any two consecutive active leavesdz’ satisfy

h(z) # h(z'). (12)

We finally note that, for an active leaf, t/(x) and¢"(x) do not represent
the start and the end points of the corresponding interval.zled an active
leaf in BT that does not correspond to the first interval or the last interval. For
such anz, letz— andzt denote active leaves iBT which are left-hand and
right-hand neighbors of, respectively, i.e.,

t"(x7) =th(x), tzh) =1"(2). (13)
'llj'hen the start and the end points of the corresponding interval can be obtained
Yy ~
P =t @)+ ) - ) x (9
tx) = (z7). (15)
Herei"(z) and{'(z) are well-defined from 12. For active leavesindy cor-
responding to the first interval and the last interval, we hége) = —oo,

t(x) = t'(2"), I (y) = ' (y) andi’ (y) = +oc.

It follows from (11), (14), and (15) that(z), " (x), and#!(z) can be com-
puted frombase ceil, t" (), andt!(z) in O(height(BT)) time. In order to
check (12) efficiently, each active leahas

t"(at) —t"(x . .
e(z) = { max{0, h(z) — h(xz*)} x t"((x*))—tl((x)) if 2 exists, (16)
+o0 otherwise,

and each node has
he(x) = max {( Z base(z)> —e(y)}, 17)
yeLeafA(x)zEpath(m Y)

whereLeaf 4(x) denotes the set of active leaves that are descendanisntl
path (z,y) denotes the set of nodes on the path froto y. Thus we have the
following lemma.

(c) 2004 IFIP



260

LEMMA 2 Let BT be a binary tree in whicth(z) # h(z*) holds for every
active leafr. After boundingBT by a constant,

(i) h(z) # h(z™) holds for an active leaf: if and only if z satisfiesh(z) —
e(x) < ¢, and

(i) all active leaves: in BT satisfyh(z) # h(x™) if and only ifh. (rB7) < c.

O

Moreover, we can compute an active leafith i(z) = h(z*) in O(height
(BT)) time by scanningh.(x) from the rootr®7. Note thath.(z) can be
obtained by the following bottom-up computation.

base(x) — e(x) if z is a leaf,

1) = | ) (o) + tase(a)  otmemiser 09

wherez; and x5 denote the children of. This means that preparing and
updatingh.'s can be handled efficiently.

In summary, we always keep the following conditions for binary tlg&$
to represent tableg Note thatBT satisfies the conditions.

(C0) For any noder, BT maintainst!(z), t"(z), ceil(z), base(z), andh,(x).
For any leafr, BT maintainse(x) in addition.

(C1) Any nodez satisfiest!(z) < t"(z). Any internal noder satisfiest!(x)
= minyELeaf(x) tl(y)' andt” (ZE) = IMaXyc Leaf (z) " (y)

(C2) Any active leafr satisfieg” (z) = t!(z).

(C3) Any active leafr satisfiesh(z) # h(z™).

(C4) Any active leafs satisfiesi(z) > h(z) — e(x).

A binary tree BT is calledvalid if it satisfies conditions (C0) (C4). For

example, a binary treBT constructed byM AKETREE is valid.

~— —

Operation NORMALIZE

As discussed in Section 4, we represent a talde a valid binary balanced
tree BT. For an active leat, our algorithm sometimes need to upd&€ to
get one havin@ccuratez, i.e.,baseandceil are updated so that

o 0 for a proper ancestarof = orx
base(y) = { ﬁ(y) fory=z"orzx (19)
ceil(y) = oo for an ancestoy of z~ orxz (20)
t"(y) =t (y") = "(y) fory=zorz.

In fact, we perform this operation, when we insert a leaf change the param-
etersceil(x), base(x), t"(x), andt!(x) of a leafz. The following operation,

(c) 2004 IFIP



261

called NOorRMALIZE, updatesBT as above, and also maintains the balance of
BT (i.e.,heigh{ BT) = O(log n)).
Operation NORMALIZE(BT, x : an active leaf
Step 1: Updatebase andceil by the following top-down computation along the path frofff
to the parent ofy for y = =~ or z. For a nodez on the path and its children andz.,
base(z;) := base(z;) + base(z), ceil(z:) := min{ceil(z;) + base(z), ceil(z)},
base(z) := 0, ceil(z) := 4o0.
Step 2: If z was added taBT immediately before this operation, then rot&&" in order to
keep the balance @87
Step 3: Fory = z,z~, if base(y) > ceil(y), thent™(y) = t'(y*) := " (y) andbase(y) :=
ceil(y). Otherwiseceil (y) := +oo.
Step 4: Fory = «~,z,z", updatet', t", e, andh. by the bottom-up computation along the
path fromy to 27 i

Note that nodes may be added®d" (by operationSpLIT in the next sec-
tion), but are never removed froM(T", although some nodes become dummy.
This simplifies the analysis of the algorithm, since removing a node #8dm
requires the rotation aBT that is not easily implemented.

It is not difficult to see that the treBT’ obtained byNoRMALIZE is valid,
satisfies (20), and represents the same tabi&/agvioreover, since the lengths
of the paths in Steps 1 and 4 a&éheight(BT)), BT’ can be computed from
BT in O(height(BT)) time. Thus we have the following lemma.

LEMMA 3 Let BT be avalid binary balanced tree representing a tajpland
let z be an active leaf oBT. ThenBT’ obtained byNORMALIZE(BT, z) is
a valid binary balanced tree that represeptand satisfie$20). Furthermore,
BT' is computable fronBT in O(height(BT)) time. O

Add-Table

This section shows how to add two binary balanced tie&g and BT,
for tablesg; andgs. We have already mentioned an idea of our Add-Table after
describing operatioblAKETREE. Formally it can be written as follows.

Input:  Two valid binary balanced tree3T,, and BTy, for tablesg; andg..

Output: A valid binary balanced treBT, for g = g1 + g2.

Step 1: If #(BT,,) > #(BTj,), thenBT; := BT,, andBT: := BT,,. OtherwiseBT; :=
BT, andBT> := BTy,.

Step 2: For each active leaf € BT, computef' (z), " (x) andh(x), and call operatioA DD
for BTy, t'(x), t"(z), andh(zx). o

Operation ApD(BT, 01,02,c)

Step 1: Call SpLIT(BT,0; — t2T ) andSpLiT (BT, 02 — tEL,), wheretZT, denotes the
parametety,s. for BT

Step 2: For a noder in rep(f; — t2X., 02 — tEL,), base(z) = base(x) + ¢, ceil(z) =
ceil(x) + ¢, andhe(x) := he(z) + c.

Step 3: For a noder such that!(z) = 6, — t£L,, call NorMALIZE(BT, ).

(c) 2004 IFIP



262

If base(z~) = base(x) (i.e.,h(z~) = h(z)), then

t"(y)=t'(y") = t"(y") (i.e.,y™ becomes dummy) (21)

and callNormALIZE( BT, y) andNorMALizE(BT, y™).
Step 4: For a leafy such that" (y) = 0, — t2T., call NORMALIZE(BT, y).

If base(y) = base(y™) (i.e.,h(y) = h(y™)), then update” (y), t'(y*) andt” (y*) as
21, and callNorMALIZE( BT, y) andNoRMALIZE(BT, y ™). O

Steps 3and 4 are performed to keep (12). Notelih@t) is updated in Step
2forall nodesinep(0; —t5T  0o—tB1 ). It follows from (18) thath. (y) must
be updated for all proper ancestgrsf a node |nrep(01 —tBT 9, — BT ).
Since a proper ancestgof some node Im'ep(91 tBT 0,—t71 Yisa proper
ancestor of the node such that!(z) = 6, — tJT ort"(z) = 6, — all
suchh.(y)’s are updated in Steps 3 and 4 by operallaPRMALIZE.

base’

Operation SpLiT(BT,t : a nonnegative redl

Step 1: Find a noder such that'(z) < t < t"(x).

Step 2: Call NoRMALIZE(BT, 2~ ) andNORMALIZE(BT, z).

Step 3: If t'(x) = ¢, then halt.

Step 4: For the nodey € {z~,z} such that'(y) < t
t'(y1) == t'(y),t"(y1) := t, base(y1) := 0 and ceil(y1) := +oo, and construct the
right child yo with ¢! (y2) := ¢, " (y2) := t"(v), base(y2) := 0 andceil(ys) := 4-o0.

Step 5: Call NORMALIZE(BT, y1) andNORMALIZE(BT, y2). m|

t"(y), construct the left childs with

We can see that the following two lemmas hold.

LEMMA 4 Let BT be avalid binary balanced tree representing a tajpland
let ¢ be a nonnegative real. TheB1” obtained by operatioSpLIT(BT, t) is
a valid binary balanced tree representigdgn O(height(BT')) time. O

LEMMA 5 Let BT be avalid binary balanced tree representing a tajpland
let I = ([01,62),c) be atime interval. ThehDD(BT, 61, 62, c) produces a
valid binary balanced tree representing the taple- I, and moreover, it can
be handled irD(height(BT)) time. O

Operation Ceil-Table

This section considers operati@eil-Table Let BT be a valid binary bal-
anced tree representing a taleand letc be an upper bound oBT'. As
mentioned in Section 4, we setil(r?7) = ¢, and modifyBT so thath(z) #
h(z*) holds for any two consecutive active leaweandz.

Operation CEIL(BT, ¢ : a positive rea)

Step 1: Compute the leftmost active leafsuch thati(y) — e(y) > ¢ by usingh.. If BT has
no such node, then go to Step 4.

Step 2: Call NorMALIZE(BT, y) andNoRMALIZE(BT, y 1),

(c) 2004 IFIP



263

base(y) = base(y) (" (y) — t'(y)) + base(y ") (" (y*) — tl(?ﬁ)), and

tr(yt) — t'(y)
t"(y) = t'(y") = t"(y").
Step 3: Call NorMALIZE(BT, y) andNorMALIZE(BT,y). Return to Stepl.
Step 4: For arootr®7, ceil(rB7) :=c. o

LEMMA 6 LetBT be avalid binary balanced tree representing a tajpland
let c be a nonnegative real. The®T” obtained by operatio@EIL(BT, ¢) is a
valid binary balanced tree representing the table obtained fydoy ceiling it
by c. O

Step 3 concatenates two consecutive active leavasd z*, wherex™
becomes dummy. We notice that the active legfwhich has already been
concatenated) may further be concatenated. This means(thpt= i (z")
may hold after successive concatenations, even if origifabatisfies(z) #

h(z™).

Time complexity of SINGLE-PHASE Wwith our data structures

We can see that all operatioAgd-TablesShift-TablesandCeil-Tablescan
be done inD(n log® n) time in total, though we skip its proof.

THEOREM 7 The sink location problem in dynamic tree networks can be
solved inO(n log? n) time. O

This implies the following corollary.

COROLLARY 8 If a given network is tree and has a single SitKNGLE-
PHASE can solve the quickest transshipment proble®in log? n) time. O

5. Conclusions

In this paper, we have developed @fn log? n) time algorithm for a sink
location problem for dynamic flows in a tree network. This improves upon an
O(n?) time algorithm in [11].

We have considered continuous-time dynamic flows that allow intermediate
storage at vertices. We note that optimal sinks remain the same, even if we do
not allow intermediate storage, and moreover, our algorithm can also be appli-
cable for discrete-time dynamic flows. Therefore, our sink location problem is
solvable inO(n log® n) time for dynamic continuous-time/discrete-time flows
with/without intermediate storage.

Acknowledgments

This research is partially supported by the Grant-in-Aid for Creative Sci-
entific Research of the Ministry of Education, Culture, Sports, Science and
Technology.

(c) 2004 IFIP



264

Notes

1.

It was shown in [11] that the number of intervals is at n#asfor discrete-timedynamic flows.

2. For simplicity, we write the first intervdly as([—o0, 1), 0) instead of((—o0, 61), 0).

References

(1]

(2]
(3]

(4]
(5]
(6]
(7]
(8]
El
[10]
[11]
[12]
[13]

[14]

[15]

[16]

K. Arata, S. lwata, K. Makino and S. Fujishige: Locating sources to meet flow demands
in undirected networksJournal of Algorithms42 (2002) 54—68.

J. E. Aronson: A survey of dynamic network flowsnnals of OR20 (1989) 1-66.

L. G. Chalmet, R. L. Francis and P. B. Saunders: Network models for building evacuation.
Management Scienc28(1982) 86—105.

L. Fleischer ands. Tardos: Efficient continuous-time dynamic network flow algorithms,
Operations Research Lettei23 (1998) 71-80.

L. R. Ford, Jr. and D. R. Fulkerson: Constructing maximal dynamic flows from static
flows, Op. Res.6 (1958) 419-433.

L. R. Ford, Jr. and D. R. FulkersorElows in Networks (Princeton University Press,
Princeton, NJ, 1962).

H. W.Hamacher and S.A.Tjandra: Mathematical modelling of evacuation problems: A
state of the art, InPedestrian and Evacuation Dynamj&pringer, (2002) 227-266.

B. Hoppe and. Tardos: The quickest transshipment problétathematics of Operations
Research25 (2000) 36-62.

S. lwata, L. Fleischer, and S. Fujishige: A combinatorial strongly polynomial algorithm
for minimizing submodular functiongpurnal of the ACM48 (2001) 761-777.

H. Ito, H. Uehara and M. Yokoyama: A faster and flexible algorithm for a location problem
on undirected flow network$EICE Trans. Fundamental&£83-A (2000) 704—-712.

S. Mamada, K. Makino and S. Fujishige: Optimal sink location problem for dynamic flows
in a tree networklEICE Trans. Fundamental&£85-A (2002) 1020-1025.

S. Mamada, T, Uno, K. Makino, and S. Fujishige: An evacuation problem in tree dynamic
networks with multiple exits, Working paper.

P. B. Mirchandani and R. L. FranciBiscrete Location TheoryJohn Wile & Sons, Inc.,
1989).

W. B. Powell, P. Jaillet, and A. Odoni: Stochastic and dynamic networks and routing, In:
Network RoutingHandbooks in Operations Research and Management ScifMeO.

Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, eds, North-Holland, Amster-
dam, The Netherlands, 1995), Chapter 3, 141-295.

A. Schrijver: A combinatorial algorithm minimizing submodular functions in strongly
polynomial time J. Combinatorial TheoryB80 (2000) 346—355.

H. Tamura, M. Sengoku, S. Shinoda, and T. Abe: Some covering problems in location
theory on flow networkdEICE Trans. Fundamental&75-A (1992) 678—683.

(c) 2004 IFIP



	Select a link below
	Return to Main Menu
	Return to Previous View


