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Abstract We propose an approximation algorithm based on the Lagrangi price -
directive decomposition method to compute eaapproximate solution of the
mixed fractional packing and covering problem: find= B such thatf(z) <
(1 +¢€)a, g(z) > (1 —e)b wheref(z), g(z) are vectors with\/ nonnegative
convex and concave functionsandb are M - dimensional nonnegative vectors
and B is a convex set that can be queried by an optimization orl§@igiora-
cle. We propose an algorithm that needs aplyd/ ¢ =2 In(Me™")) iterations or
calls to the oracle. The main contribution is that the alfponisolves the general
mixed fractional packing and covering problem (in conttaspure fractional
packing and covering problems and to the special mixed pgciind covering
problem withB = IRY) and runs in time independent of the so-called width of
the problem.

Keywords:  Convex and concave optimization, approximation algorghm

1 Introduction.

We study mixed fractional packing and covering probld®&PC,) of the
following form: Given a vectorf : B — IR% of M nonnegative continuous
convex functions and a vectgr: B — ! of M nonnegative continuous
concave functions, twd/ - dimensional nonnegative vectarsh, a nonempty
convex compact sé® and a relative tolerancec (0, 1), find an approximately
feasible vector: € B such thatf(z) < (1 +¢€)a andg(z) > (1 —e€)borfind a
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proof that no vector is feasible (that satisfies B, f(z) < a andg(z) > b).
W.l.0o.g. we may assume thatandb are equal to the vecterof all ones.

The fractional packing problem with convex constraints, to findz € B
such thatf (z) < (1 + €)a, is solved in [6, 7, 10] by the Lagrangian decompo-
sition method inD(M (e 2 + In M)) iterations where each iteration requires a
call to an approximate block solvetBS(p, t) of the form: findz € B such
thatp” f(2) < (1 + t)A(p) whereA(p) = mingepp” f(x). Furthermore,
Grigoriadis et al. [8] proposed also an approximation atbor for the frac-
tional covering problem with concave constraints, i.e. nd fi € B such that
g(z) > (1 — €)b, within O(M (e 2 + In M)) iterations where each iteration
requires here a call to an approximate block soW&S(q, t) of the form: find
# € B such thay”g(z) > (1 — t)A(q) whereA(q) = max,ep g’ g(z). Both
algorithms solve also the corresponding min-max and max@epiimization
variants within the same number of iterations. Furthermihrealgorithms can
be generalized to the case where the block solver has aybépproximation
ratio [9-11].

Further interesting algorithms for the fractional packargl fractional cov-
ering problem with linear constraints were developed bykiticet al. [14] and
Young [16]. These algorithms have a running time that depdimearly on
the widthp - an unbounded function of the input instance. Severalivelst
complicated techniques were proposed to reduce this depead Garg and
Kénemann [5] described a nice algorithm for the fractioreatkpng problem
with linear constraints that needs oril{ Me~2 In M) iterations. On the other
hand, the algorithm by Grigoriadis et al. [8] is the only knmoalgorithm that
solves the fractional covering problem with a number ofatiens indepen-
dently on the width.

For the mixed packing and covering problem (with linear ¢aists and
polytopeB), Plotkin et al. [14] proposed also approximation algarithwhere
the running time depends on the width. They present an #hgorihat uses
O(M?(In? p)e=?In(e~" M In p) In p) calls to an oracle of the form: find a ver-
texz € B with f(z) < va and

pl f(2)— Z Gmgm () = min{p” f(z)— Z Gm9m(x)|z vertex of B}

mel(v,i) mel(v,xz)

wherel (v, z) = {m|gm(z) < vb,}, v is a constant and where

fm(@)/am; gm (2)/bm).

P =, e
Young [17] described an approximation algorithm for a splesiixed pack-
ing and covering problem with linear constraints with nagative coeffi-
cients and special convex sBt = IRY. The algorithm has a running time
of O(M?e=21In M). Recently, Fleischer [4] gave an approximation scheme
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for the optimization variant (minimizing” = such thatCz > a, z < b and

z > 0 wherea, b, andc are nonnegative integer vectors afids a nonneg-
ative integer matrix). Applications of the pure and mixeacfional packing
and covering problems can be found in [1-5, 9-12, 14, 17]ny¥d47] posed
the following open problem: find an efficient width-indepent Lagrangian-
relaxation algorithm for the abstract mixed packing andecimg problem: find
x € B suchthatPz < (1+ €)a, Cz > (1 — €)b, whereP, C' are nonnegative
matrices,a, b are nonnegative vectors attlis a polytope that can be queried
by an optimization oracle (given a vectarreturnz € B minimizing ¢’ z) or
some other suitable oracle.

New Result: Our contribution here is an efficient width-independent La-
grangian - relaxation algorithm for the mixed packing andecing problem
that uses a suitable optimization oracle of the form (giwvem ¥ectorse, d, re-
turnz € B, d'xz > 1, minimizing ¢’ z). Interestingly, a feasibility oracle of
the form (given two vectors, d, returnz € B such that”z < 1 andd’z > 1)
is also sufficient. This solves the open problem by N.E. Yollng. Interest-
ingly, our algorithm works also for a more general problenthve convex set
B and nonnegative convex packing and concave covering eimistr

The algorithm uses a variant of the Lagrangian or price tireclecompo-
sition method. This is an iterative strategy that sol(&&PC,) by computing
a sequence of triple®, ¢, =) as follows. A coordinator uses the current vector
z € B to compute two price vectos = p(z) € R} andg = ¢(z) € RY
with Z%zlpm + ¢» = 1. Then the coordinator calls an optimization or-
acle to compute a solutiofh € B of the block problem(BP) of the form
A(p,q) = min{p” f(y)ly € B.q"g(y) > X )_, am}, and makes a move
from z to (1 — 7)z + 74 with an appropriate step length € (0,1). Such
a iteration is called a coordination step. For our algorithwe only require
an approximate block solvér BS) that solves the underlying block problem
(BP) to a given relative tolerancee (0, 1):

ABS(p,q,t) : compute & = z(p,q) € B such that
p"f(&) < (L+t)A(p,q) and ¢"g(#) > 5 =1 gm-
Our main result is the following:

THEOREM 1 There is an approximation algorithm that for any given accu-
racy e € (0,1) solves the mixed fractional packing and covering problem
(M PC,) within

N =O(Me?In(Me™))
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iterations or coordination steps, where each of which rezgia call toABS(p,
q,0(¢)) and a coordination overhead @?(M In(Me~!)) arithmetic opera-
tions.

Alternatively, instead of using the approximate block solan approximate
feasibility oracle of the form (computé¢ € B such thatp” f(z) < (1 +
t) Som—1Pm andgTg(2) > 45 S0, gm) is also sufficient.

Main Ideas: Our algorithm builds on approximation schemes of Grigori-
adis et al. [7, 8] and Young [17]. One of the ideas is to comlbivee different
potential functions that were proposed for pure fractigrzedking and covering
problems [7, 8]. We associate here with the packing and eoyeonstraints
the following potential function:

®(0,2) = 20— 7 Y5 (0 — fu(2) — 47 Loy In(gm(2) — 5)

wheref) € IR; andt > 0 is a tolerance that depends emand is used in the
approximate block solver. The functidr can be extremely small, since there
is no upper bound on the function valugs(x). Let A be a nonempty subset
of M = {1,..., M}. To control the values of the covering functiong(z)
and to have a lower bound for the potential function, we elate functions
gm (and the corresponding index i) when the function value,, (z) is larger
than a prespecified threshold valtieand modify the potential function. Let
A(z) denote the index set corresponding to a given vecter B. Then the
modified potential function has the form:

Dy(0, 7, A(z)) = 2In0 — L SN In(0 — fin(2))

_% ZmEA(:r) ln(QM(x) - %) - % ZmQA(:r) ln(T)
The potential function®; has an unique minimuréi,,)(z) that approxi-
mates the objective value

Aa(e)(w) = max(max fm(z), nax 1/gm(z)).
This potential function®; and the minimize 4(,)(z) is used to define the
price vectorsp = p(xz) andq = ¢(x) for the current vector: € B and
to optimize in the correct direction. Another important graeter for the
convergence of the algorithm is the reduced potential valde, A(z)) =
(0 a(z)(2), 7, A(z)) for x € B andA(x) C {1,..., M}. Since we can not
control the values of eliminated functiops, for m ¢ A(x) (after the elimina-
tion), at the end of each phaseave take a convex combination over different
computed vectors.
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The main problem is to choose a good step lengih order to obtain a
fast and width-independent convergence. To achieve thas\ge study the
following four cases:

(1) :p" f(x) = p" f(#) > 0 and ¢" () — q"g(z) > 0,
(2) : p" f(z) —p" f(2) < Oand ¢"g(z) — q"g(z) >0,
(3) : p" f(x) = p" f(#) > 0 and ¢" () — ¢"g(z) <0,
(4) : p" f(z) = p" f(%) < Oand ¢"g(2) — q"g(z) <0,

wherez is the current solution anglis the block solution corresponding to the
price vector® = p(x) andq = q(x). Caseg4) with p” f(z) —p” f(2) < 0 and
q"g(2) — qTg(z) < 0is not possible. In this case one of the stopping rules is
satisfied and the algorithm stops with the iteratd he step length is defined
carefully in dependence on the cagés— (3) and the minimizet 4, () of

the potential function. In the general case, the coordimataves from solution
zto (1 — 7)z + 72 and sets the index sélt(z') = {m € A(z)|gm(z') < T}.

In the case whereax,c 4 gm (z)(1 — 7) + gm(2)7 > T we reduce the step
length fromr to 7 and use as next vectot = (1 —7)z +7Z. This is important

for the convergence analysis.

2 Potential function and price vectors

Let A be a nonempty subset g1 = {1,..., M}. During a phase, we
eliminate a concave functiag),, (and the corresponding index i) when the
function valueg,,(z) > T. Let A(z) denote the index set corresponding to a
given vectorz € B. For simplicity we used = A(z) (if the dependence is
clear).

2.1 Potential function

The potential functiord, (given above) is well defined for4 (z) < 0 < oc
where

).

1
Aa(x) = max(lgr%aSXM fm(z), max @)

If gn(z) = 0 for at least one indexn € A then we define\4(z) = oc.
Furthermore®, has the barrier property (i.eb;(0,z, A) — oo for § — oo
and for@ — Xa(z)). We define the reduced potential functigp(z, A) as
the minimum value®, (6, z, A) overf € (Aa(x),00) for a givenz € B.
The unique minimizeé 4(z) can be determined from the first-order optimality
condition:
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1 t 1
mze Fn( MGZ ()—1/9:2' (1)

meA Gm\T

The implicit function 4 (x) approximates\ 4(x). This is important for the
further analysis.

LEMMA 2

0.4(2)/(1+1/(2M)) > Aa(a) > 0a(x)(1 — & — 14

5~ 537) 2 0al@) (1 —1).

Lemma 2 shows that the valdg () approximates the objective valig ()
for smallt. Interestingly, the reduced potential functiofiz, A) can be bounded
also in terms of) 4 ().

LEMMA 3 If g, (z) < T foreachm € Atheng,(z, A) > (2 —t)Infa(z) —
tInT. Furthermore, ifl' > 1/A4 () theng,(A,z) < 2In64(z)+2¢In(2L)+
tIn(1 + t/(2M)).

2.2 Pricevectors

Given a vectorzr € B and a subsetl C {1,...,M}, the price vector
p(z, A) is defined by

t 04(x)
A — 2
Pl ) = 90 642 — f) @
and the price vectaf(z, A) is given by
ﬁﬁm(z)ﬂa(m)fl m e A,
m(z, A) = 3)
0 otherwise.

Using the first-order conditios._, pn (2, A)+>XM_ ¢, (z, A) = 1 and
each component,, (z, A), g (z, A) is nonnegative.

L 4 @) ot AT f(2) = 0a(2) (DM p(w, 4) —1/2) < 0a(2) (1 -
t/2),

®) (@, A)Tg(x) = (Cimea dm(z, A)+|Al/(2M)) /04 (2) < (Cpnea m(z, A)+
t/2)/0a(z) < (1 +1/2)/0(x).

Notice that Lemma 4 (a) implies th&&_, p,,(z, A) > t/2.
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3 Our approximation algorithm

In this section we describe the approximation algorithnngtfe mixed frac-
tional packing and covering problem. First we suppose thexetexists a fea-
sible solutionz € B with f(z) < e andg(z) > e. Then the approximation
algorithm works as follows:

(1) compute initial solution:(?), s := 0, ¢y := 1/4;
(2) repeat {scaling phase }

(21) s:=s+1;e, =€, 1/2; 2 := x0T (s) := 528( M3 /€2) ) A s ();
A= {m € {1,...,M}|gm(z) < T(s)}; finished := false;
k:=0;

(22) if A#{1,..., M} then begin k:=k+1; 2, := x end;

(2.3) if stopping rulel is satisfied for: then finished := true;y := x
end;

(2.4) whilenot(finished) dobegin
(2.4.1) computed 4(z), p(z, A) andg(z, A);

(24.2) & := ABS(p(z,A),q(z, A),e5/32);
(2.4.3) if one of the stopping rules is satisfied
then begin finished := true; y := z end
else begin
(2.4.3.1) compute step lengthandz’ := (1 — 7)z + 71;
(2.4.3.2) if maxmea gm(z)(1 — 7) + gm(2)7 > T(s) then
reduce
rto7andz' := (1 — 7)z + 71;
(2433) A" := A\ {m|gn(z') > T(s)}; z = 2';
(2.4.34) if A+ A’ thenbegin k := k + 1: zj, = 2
A:= A" end
end

end;

(2.5) compute convex combination of . ..., zj. y to getz(®);

(2.6) until e, < e/2 or A\(z(*)) <14 ¢

(3) return@(®)).

The details of the algorithm are described later in thisise¢how to com-
pute an initial solution, the stopping rules, the choicenefdtep length, and the
reduction of the step length). For the case where the setsfifie solutions
{z € B|f(z) < e, g(z) > e} is empty, we have to modify the program above.
If an inequalityp(z, A)T f(2) > (141) 3. pm (2, A) holds for a block solution
z, then we can conclude that there is no feasible solution.
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3.1 Initial solution

Foreachn € {1,..., M}, we consider the block proble(®,, ) of the form
A(p, q) = min{; 0L, fo(z)|z € B, gm(z) > 1} wherep = (1/M, ..., 1/M)
andqg = e,, is the unit vector with all zero coordinates except forststh
component which id. If there is a solutionz € B with f(z) < e and
g(Z) > e, then this solution satisfigd /M) > M, f4(z) < 1 andg,,(z) > 1.
Let 2™ ¢ B be an approximate solution of the block probléBy,,) with tol-
erancet = 1/2, and letz(*) = (1/M) " M_, zl™l. Using the convexity of3,
2(®) € B. If the approximate solution satisfies/M) 307, fo(2™)) > 1+,
then we conclude that the solution set of the mixed probleamipty. In the
other case we can prove:

LEMMA 5 Ifthere exists a feasible solution of the mixed packing anwdng
problem, them\(z(?)) < 3M/2.

3.2 Stoppingrules

In the algorithm we stepwise decrease in phases the olgeaiue) from
3M/2t01/(1 —€/2). Inthe first phase we decrea®®//2 toe; = 1/8. After
that we set, = ¢,_;/2. The goal in phase is to obtain a solution:(*) with
Az(®)) < 1/(1 — ¢,). In order to get such a solution we need at the end of
phases a solutiony with A4(y) < 1/(1 — €5s/4). This is necessary, since
we eliminate covering constraints within the phases. Taialthe solutiory
and to show the convergence we use three stopping ruleshé&irgt rule we
simply test whether

Aa(z) <1+€/4 4
for the current solutior:. For this rule we get immediately

LEMMA 6 If Ag(z) < 1+es/dthenf(z) <1+e/4 <1/(1 —€s/4) for
eachm € {1,..., M} andg,(z) > 1/(14+€5/4) > 1—¢,/4 for eachm € A.

For the second rule we define a parametahat depends on the current
iteratez and the approximate block solutianas follows

v = () = DI =" 1(@) +0(a"9(d) ~ " 9(x))
’ pT f(z) +pT f(2) +0(¢"g(2) + qTg(x))

wherep = p(x,A), ¢ = q(z,A) andf = 04(x). Clearly,v(z,z) <
1. The Lemma below states thatis an approximate solution of the phase
corresponding to subset, whenv is bounded by = O (e;).

(®)

LEMMA 7 Suppose; € (0,1) andts = €,/32. For a givenz € B, let
p, q¢ be computed by?2, 3) andz computed bYABS(p, g, ts). If v(z,2) < ts,
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then f,(z) < 1+ ¢e/4 < 1/(1 — €,/4) for eachm € {1,..., M} and
gm(x) > 1/(1 +€5/4) > (1 — €5/4) for eachm € A.

The third stopping rule is used to control the number of tters during
one phase. Here we use a parametethat depends on the phase

3M(1361/4) s=1
wg =
l—es—1
T=c./4 s> 1
Then the third rule is defined by
A (z) < wedpg (1) (6)

wherez(*~1) is the solution of phase — 1 that satisfies\(z(*=")) < 1/(1 —
6571).

LeEMMA 8 Letz(*~1) be the initial solution and: be a vector in phase > 1
with A4 (z) < wA(z5 D) for A € M. If Aa (25~ D) < 3M/2for s = 1 and
Aa(z 1) < 1/(1 — €,_1) for s > 2, then we obtaim 4 (z) < 1/(1 — e,/4).

3.3 Choiceof the step length

In this subsection we describe the choice of the step lengilVe suppose
that we have computed a vecterand an approximate block solutianin a
phases such thatv(z,z) > ¢, pTf(2) < (1 +t) X M_, p,, and¢Tg(2) >
57 -1 dm (Wheret = t,, p = p(z, A(z)) andq = q(z, A(z))). Lets’ =
(1 —7)x + 7. First we focus on the case wheyg(z') < T = T'(s) for each
m € A(z). In this case we do not eliminate a component (@#ér') = A(x)).
The other case will be discussed later (in some cases we haadition to
reduce the step length). For simplification we ése 6 4(,)(z). Since each
function f,,, is convex and each functiay, is concave, we get independently
on the choice of the following inequalities

9—fm($’) > (0= fm(2))(1 + 2Z«;\/[pm(fm(m) — fm(2))),

gm(x’) - 1/9 > (gm(z) — 1/0)(1 + QT?/MQm(Qm(@) — gm(x)))

for each indexn € M orm € A(z), respectively. We call a step length
feasibleif 7 € (0,1) and if the following value:

2T M R 2T MO
(g | 27 () ~ (@), max 1275
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is bounded byl /2. Suppose from now on thatis a feasible step length.
Later we will specify different step lengthswith 7 € (0,1) to obtain the
bound (7). Then usingd — fp,(z) > 0 andg,(z) — 1/6 > 0 we obtain
0 — fm(2') > 0 andg,,(z") — 1/6 > 0 for the next computed vectar € B.
This implies that the objective valug,, (') for the next vector’ is at most
0.4(z) (), where hered(z) = A(x).

LEMMA 9 For any two consecutive iterations in a phase with computsd v
tors z,z' and A(z') = A(z) and any feasible step length the difference
¢i1(z, A(z)) — ¢i(2', A(2")) is at least

+2T[(12?Tf(x) —pT£(£))/0 + (¢T9(2) — qTg(z))0]
— M ((pT f () + pT f(2))/0 + (¢79(2) + qTg(x))0)%,

wheref = 0 4(,(7), p = p(z, A(z)) andq = q(z, A(x)).

The proof of Lemma 9 can be found in the full version. In ouoaidtnm we
use the following step lengths:

o= tw/4M[(" f(z) +p" f(2)/0+ (¢T9(&) + ¢" g(x))h]),
T = tw/(4M[(p" f(z) + " f(2) + (¢T9(2) + ¢Tg(2))6)),
3 = 2/(AM[(p" f(z) +p" [(2))/0 + (¢"9(&) + q" g(2))0)),

o= t/(12M)

wheref = 04(z) andv = v(z, &). With exception of the last case, all step
lengths above are feasible for anye (0,1/2]. The last step lengthy is
feasible only for the cas¢’ ¢(z) < q”g(z) and anyt € (0,1]. Furthermore,
note that each step lengthe (0, 7;] is also feasible foi € {1,...,4}. In our
algorithm we use the step lengths (see Table 1) in dependentiee current
vectorz, the approximate block solutia, the minimizer = 6 4,)(x) and
the price vectorg = p(z, A(z)), ¢ = q(z, A(z)).

The main goal now is to prove the following result. The proaf de found
in the full version of the paper.

THEOREM 10 For any two consecutive iterations in a phase with computed
vectorsz, ', index setsd(z) = A(z') andt < 1/224 we obtain: ¢;(z, A(z))—

di(a’, A(z') > O(f7).
3.4 Reducingthestep length

Letz’ = (1 — 1)z + 74 wherez is the current vectot; is the block solution
andr is the step length as used in the previous subsection. CGarasighase

(c) 2004 IFIP



233

<2 |2<6<200 | 200<0

and 7'1/120 T1/120 T1/2

and p) T2 T2

and - 73/3 74/9 T4/9

Table 1. The choice of the step lengths

s with threshold valud’(s). For simplicity we us&’ = T'(s). If g, (¢') < T

for eachm € A(z), then we use:’ as the next iterate and sé{(z’) = {m €
A(z)|gm(z'") < T}. In this case some components may be eliminated, but
we use the original step length. Now we consider the casegthat’) > T

for at least one coordinate: € A(z). Lety(7) = max,,ca(y) gm(7)(1 —

7) + gm(2)7 for 0 < 7 < 1. If 4(7) > T then we reduce the step length

In this case we compute < 7 such thaty(7) = T. Usingg,,(z) < T for
eachm € A(z) and~(r) > T, there is at least one component € A(z)
such thay,, () > T'. In addition, the valué& is unique and can be computed
in O(M) time. We use here’ = z(1 — 7) + Z7 as next iterate and set
A(z') = {m € A(z)|gm(z") < T}. If v(r) < T then we do not have to
reduce the step lengthand use again’ = z(1 — 7) + Z7. But we eliminate
as above all componenta € A(z) with g,,(z') > T. Notice that the case
with gp, (z') > T > gm(z)(1 — 7) + gm(2)7 is possible (since the functions
gm are concave). For eaoh € A(z') we haveg,,(z') < T. If we use a
reduced step length < 7 thenA(z) # A(z'). But A(z) # A(z') can happen
also whemy(7) < T or g,,(z') < T for eachm € A(z). Now we consider
two cases depending whether we use the original step lengthhe reduced
step lengthr. We can prove similar to Theorem 10 the following two results
(the proofs are given in the full paper).

THEOREM 11 For any two consecutive iterations with computed vectors,
index setsA(z) # A(x'), maxpeca(z) gm(z)(1 — 7) + gm(2)7 < T and
t < 1/224, we obtaing, (z, A(z)) — ¢ (', A(z")) > O(L).

THEOREM 12 For any two consecutive iterations with computed vectors,
index setsA(z) # A(2'), maxpeca(z) gm(z)(1 — 7) + gm(Z)7 > T and
t < 1/224, we obtaing,(z, A(x)) — ¢(z', A(z")) > 0.
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3.5 Convex combination of different vectors
First we can prove an upper bound for the packing constraints

LeEMMA 13 For any iteration of the phasewith computed vectar, A f(z) =
maxi<m<n fm () is bounded byM /.

Lemma 13 shows that the valugs (x) are not arbitrary large in the algo-
rithm. Notice that this is independently from the chosep f&eagthr € (0, 1).
We use this bound for the convex combination below. Noticd th addi-
tion the components,,(x, A(x)) of the price vectop(z, A(z)) are not arbi-
trary small (i.e. p,(x, A(z)) > ts/(2M)). At the end of phase we have
computed a vectoy € B with A4, (y) < 1/(1 — €/4). This implies
fm(y) < 1/(1 — e5/4) for eachm € {1,...,M} andgn,(y) > 1 — /4
for eachm € A(y). The goal is now to compute a vectof®) € B with
A (2)) < 1/(1—¢,). The key idea is to use a convex combination over sev-
eral vectors computed during the phase. €t .., z; be the vectors in phase
s where at least one functiog,, is eliminated (i.e. wherg,,(z;) > T(s)).
Clearly, k < M. We haver; = z6~V if g,,(z¢~1) > T(s) for at least
onem € M (herez*~1 is the solution of the previous phase). We take the
following convex combination:

2 2
(8 = lemxi-l—(l— 26@%)9'

Since the seB is convex andzi,...,z;,y € B, we obtainz(®) € B. Our

threshold valuel'(s) is equal t0528(]‘€/’—23) : m Notice thatT'(s) <

528 M3 /€2, since Ay (z*~ V) > 1 (otherwise we are done). Then we can
prove:

LEMMA 14 The computed solution(*) satisfies\ v (z(*)) < 1/(1 — ¢,).

4 Analysisof theapproximation algorithm

In this subsection we determine the total number of itenatiof our algo-
rithm. To do this we calculate first the number of iteratioks in a single
phases. Lety,y denote the initial and final iterate of phaseFurthermore,
let y be the solution afteN, = N, — 1 iterations. For consecutive iterations
with computed vectors, z’ in a phase andi(z) = A(z'), the difference in
the potential valuesy (z, A(z)) — ¢(a', A(z')) > < wherec is a positive
constant and = t5; = €,/32. In addition, there are at modt/ iterations
with consecutive vectors, =’ and different subsetd (z) # A(z') (i.e. in
these iterations at least one component is eliminatedhdset cases, we have
di(z, A(z)) — ¢u(2', A(z")) > 0. Therefore,d;(y, A(y)) — é:(y, A(y)) >
%(l\_fs — M). Then we can prove the following result:
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THEOREM 15 The number of iterationd/, in phases is at most
O(Me;?In(Me; b))

and the total number of iterations of our algorithm is at most
O(Me ?In(Me™ b)),

Remark: The rootf,(x) can often be computed only approximately, but
an accuracy o6 (e2/M) for §4(x) is sufficient to generate the above bounds
on the number of iterations. With this required accuraog,ibmber of eval-
uations of the sum? 351 g7 + 377 Ymea gog=17s 1 bounded by
O(In(Me™1Y)). This givesO (M In(Me 1)) arithmetic operations to determine
0 4(x) approximately.

5 Concluding Remarks

In this paper we have presented an approximation algoritimthe mixed
packing and covering problem that uses ol =2 In(Me~!)) calls to an
oracle of the form: compute & € B such thatf(z) < 1 andg(z) > 1.
We note that probably the computation of the convex comiinatan be
avoided and the number of calls to the oracle can be impravédi/ (In M +
e~21Ine~")). The details will be given in the full paper.
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