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Abstract

One can try to parametrize the set of the instances of an optimization prob-
lem and look for in polynomial time achievable approximation ratio with relspec
to this parametrization. When the approximation ratio grows with the parame-
ter, but is independent of the size of the instances, then we speaksihblat
approximation algorithms. An interesting point is that there exist stableappr
imation algorithms for problems like TSP that is not approximable within any
polynomial approximation ratio in polynomial time (assuming P is not equal
to NP). The investigation of the stability of approximation overcomes in this
way the troubles with measuring the complexity and approximation ratio in the
worst-case manner, because it may success in partitioning of theaetrgfut
instances of a hard problem into infinite many classes with respect to ttheshar
of the particular inputs. We believe that approaches like this will become the
core of the algorithmics, because they provide a deeper insight in tdedss
of specific problems and in many application we are not interested in that-wor
case problem hardness, but in the hardness of forthcoming probianaes.

1. Introduction

Immediately after introducing NP-hardness (completeness) [Co71] as a co
cept for proving intractability of computing problems [Ka72], the following
guestion has been posed: If an optimization problem does not admit an effi-
ciently computable optimal solution, is there a possibility to efficiently com-
pute at least an approximation of the optimal solution? Several resesrcher
[Jo74, Lo75, Chr76, IK75] provided already in the middle of the sevsrdie
positive answer for some optimization problems. It may seem to be a fasci-
nating effect if one jumps from the exponential complexity (a huge inevitable
amount of physical work) to the polynomial complexity (tractable amount of
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physical work) due to a small change in the requirement —instead of &h exa
optimal solution one forces a solution whose quality differs from the qual-
ity of an optimal solution at most by - 100 % for somee. This effect is
very strong, especially, if one considers problems for which this appeox
tion concept works for any small(see the concept of approximation schemes
in [IK75, MPS98, Pa94, BC93, Va03, Hr03]).

There is also another possibility to jump from NP to P. Namely, to consider
the subset of inputs with a special, nice property instead of the whole set of
inputs for which the problem is well-defined. A nice example is the Travelling
Salesman Problem (TSP). TSP is not only NP-hard, but also the sefaaoh o
approximation solution for TSP is NP-hard for evetyBut if one considers
TSP for inputs satisfying the triangle inequality (the so-calle@SP), one can
even design an approximation algorithm [Chr76] with the approximation ratio
e = % The situation is still more interesting, if one considers the Euclidean
TSP, where the distances between the nodes correspond to the digtahees
Euclidean metrics. The Euclidean TSP is NP-hard [Pa77], but for ereall
€ > 0 one can design attrapproximation algorithm [Ar96, Ar97, Mi96] with
an almost linear time complexity.

The fascinating observations of huge quantitive changes mentioneéd abov
lead us to our proposal to consider the "stability" of approximation algorithms.
Let us consider the following scenario. One has an optimization problem P for
two sets of inputd,; and L, L1 C Lo. For L, there exists an polynomial-
time e-approximation algorithmi, but for L, there is no polynomial-timé-
approximation algorithm for any > 0 (if NP is not equal to P). We pose the
following question: Is the algorithrd really useful for inputs froml; only?

Let us consider a metrick/ in L, determining the distance between any two
inputs inL,. Now, one can consider an inpute Lo — L1, for which there
exists ary € Ly such thatlistance;(x,y) < k for some positive reat. One
can look for how "good" the algorithm is for the inputz € Lo — Ly. If for
everyk > 0 and everyr with the distance at mostto L;, A computes a#, ;,
approximation of an optimal solution far (J. ;. is considered to be a constant
depending ot ande only), then one can say thdtis "(approximation) stable"
according to the metrics/.

The idea of this concept is similar to that of the stability of numerical algo-
rithms. But instead of observing the size of the change of the output velue a
cording to a small change of the input value, we look for the size of thegeghan
of the approximation ratio according to a small change in the specification
(some parameters, characteristics) of the set of problem instancédareds
If the exchange of the approximation ratio is small for every small change in
the specification of the set of problem instances, then we have a stable algo
rithm. If a small change in the specification of the set of problem instances
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causes an essential (depending on the size of the input instancessaofe
the relative error, then the algorithm is unstable.

The concept of stability enables us to show positive results extending the
applicability of known approximation algorithms. As we shall see later, the
concept also motivates to modify an unstable algorithrm order to get a
stable algorithmB that achieves the same approximation ratio on the original
set of problem instances ashas, butB can also be successfully used outside
of the original set of problem instances. This concept is useful lsectnere
are a lot of problems for which an additional assumption on the “parameters"
of the problem instances leads to an essential decrease in the harfitiess o
problem. Such effects are the starting points for trying to partition the whole
set of problem instances into a spectrum of classes according to polynomia
time approximability.

As one can observe this approach is similar to the concept of parametrized
complexity of Downey and Fellows [DF95, DF99] in trying to overcome the
troubles caused by measuring complexity and approximation ratio in the worst-
case manner. The main aim of both concepts is partitioning of the set of all
instances of a hard problem into infinite many classes with respect to the hard
ness of particular instances. We believe that approaches like these Wik be
core of future algorithmics, because they provide a deeper insight iratheen
of the hardness of specific problems and in many applications we are et inte
ested in the worst-case problem hardness, but in the hardness cbfoitly
problem instances.

2. Definition of the Stability of Approximation
Algorithms

We assume that the reader is familiar with the basic concepts and notions
of algorithmics and complexity theory as presented in standard textbooks like
[BCO3, GJ79, H096, Pa94, We93, Hr04]. Next, we give a formalnitédin
of the notion of an optimization problem. L& = {0,1, 2, ...} be the set of
nonnegative integers, and " be the set of positive reals.

DEFINITION 1 An optimization problem U is an 7-tupleU = (¥;,%0, L,
L1, M, cost, goal), where

(i) X, is an alphabet callednput alphabet,

(i) X is an alphabet calledutput alphabet,
(i) L C X7is alanguage oveE; called thelanguage of consistent inputs,
(iv) Ly C Lis alanguage oveE; called thelanguage of actual inputs,

(v) M is afunction fromZ to 2~0, where, for every € L, M(z) is called
the set of feasible solutions for the inputz,
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(Vi) cost is a function, callectost function, that for every pairu, z), where
u € M(x) for somer € L, assigns a positive real numbesst(u, z),

(Vi) goal € {minimum, maximum}.
For everyz € L, we define
Outputy (x) = {y € M(x)|cost(y) = goal{cost(z)|z € M(z)}}

as the set of optimal solutions, am@pty (x)= cost(y) for somey €
Outputy (x).

Clearly, the meaning fat;, Xo, M, cost andgoal is the usual onel. may
be considered as a set of consistent inputs, i.e., the inputs for which the op
timization problem is consistently defined,; is the set of inputs considered
and only these inputs are taken into account when one determines the com-
plexity of the optimization problend/. This kind of definition is useful for
considering the complexity of optimization problems parametrized according
to their languages of actual inputs. In what folloWanguage(U) denotes
the languagd.; of actual inputs olU.

DEFINITION 2 LetU = (¥;,%0, L, L1, M, cost, goal) be an optimization
problem. We say that an algorithrh is a consistent algorithm for U if, for
every inputr € Lj;, A computes an outpui(z) € M(z). We say thatd
solves U if, for everyz € L;, A computes an output(x) from Outputy(x).
The time complexity ol is defined as the function

Time4(n) = max{Timea(z) | x € Ly N X7}
fromIN to IN, whereTime 4 (x) is the length of the computation dfon x.

DEFINITION 3 LetU = (¥1,%0, L, L1, M, cost, goal) be an optimization
problem, and letA be a consistent algorithm far .
For everyx € Lj, the approximation ratidR 4 () of A on x is defined as

{cost(A(:v)) Opty (x) }
Opty(z) ~cost(A(x)) )~

Ra(z) = max

For anyn € IN, we define thepproximation ration of A as
Ra(n) = max{Ra(z) |z € Ly N (X)"}.

For any positive reab, we say thatd is and-approximation algorithm for U
if Ra(z) < foreveryz € L.

For every functionf : IN — IR, we say thatd is a f(n)-approximation
algorithmfor U if R4(n) < f(n) for everyn € IN.
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In order to define the notion of stability of approximation algorithms we
need to consider something like a distance between a languagd a word
outsideL.

DEFINITION 4 LetU = (X7, %0, L, L1, M, cost, goal) andU = (X, Y0, L,
L, M, cost, goal) be two optimization problems with; C L. A distance
function for U according to Lj is any functionhy, : L — IR™ satisfying the
property

hr(x) = 0 for everyz € L.

We define, forany ¢ R™,
Ball,n(Ly) = {w € L| h(w) < r}.

Let A be a consistent algorithm fdy, and letA be ans-approximation al-
gorithm for U for somes € IR*. Letp be a positive real. We say that is
p-stable according to h if, for every real0 < r < p, there exists &, . €
IR such thatA is an §, .-approximation algorithm for, = (X7, %o, L,
Ball, (L), M, cost, goal).t

Ais stableaccordingto h if A is p-stable according té for everyp € IR*.
We say thatd is unstable according to h if A is notp-stable for any > 0.

For every positive integer, and every functiorf, : IN — IR* we say that
Ais (7, f(n))-quasistable according to h if A is an f,.(n)-approximation
algorithm forU, = (X1, ¥o, L, Ball, (L), M, cost, goal).

One may see that the notion of stability can be useful for answering the
guestion how broadly a given approximation algorithm is applicable. If one is
interested in negative results then one can try to show that for any adaeon
distance measure the considered algorithm cannot be extended to wark fo
much larger set of inputs than the original one. In this way one can s&arch
some more exact boundaries between polynomial approximability and polyno-
mial non-approximability.

3. Examples

We consider the well-known TSP problem that is in its general form very
hard for approximation. But if one considers complete graphs in which the
triangle inequality holds, then we have &-approximation algorithm due to
Christofides [Chr76]. The idea of this algorithm can be shortly descrilsed
follows.

INote, thats, . is a constant depending erande only.
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CHRISTOFIDES ALGORITHM

Input: A complete graph G = (V, E), and a cost function ¢ : £ —
IN* satisfying the triangle inequality.

Step 1: Construct a minimal spanning tree 7' of G according to c.
Step2: S :={v € V|degr(v)is odd}.

Step 3: Compute a minimum-weight perfect matching M on S in
G.

Step 4: Create the multigraph G’ = (V, E(T') U M) and construct
an Eulerian tour w in G'.

Step 5: Construct a Hamiltonian tour H of G by shortening w (i.e.,
by removing all repetitions of the occurrences of every ver-
tex in w in one run via w from the left to the right).

Output: H.

Since the triangle inequality holds and Step 5 is executed by repeatedly short-
ening a pathe, uy, ..., u,, y by the edge{z,y} (becauseuy, ..., u,, have al-
ready occured before in the prefix©f the cost ofH is at most the cost ab.

Thus, the crucial point for the success of Christofides algorithm is thegtaa
inequality. A reasonable possibility to search for an extension of the appli-
cation of this algorithm is to look for inputs that "almost" satisfy the triangle
inequality. In what follows we do it in two different ways.

Let A — TSP = (X;,%0, L, L;, M, cost, minimum) be a representa-
tion of the TSP with the triangle inequality. We may assume= Yo =
{0,1,#}, L contains codes of all weight functions for edges of complete
graphs, andl; contains codes of weight functions that satisfy the triangle
inequality. Let, for everyr € L, G, = (V,, E;, weight,) be the complete
weighted graph coded hy. Obviously, the Christofides algorithm is consis-
tent for (X7, X0, L, L, M, cost, minimum).

We define for every: € L,

dist(x) = '
e e P o B o e KA

For the simplicity we consider the size ofas the number of nodes 6f,
instead ofjz|.
We observe thafist(G, ¢) < r implies the so-calledl +r)-relaxed triangle
inequality
c({u,v}) < (1 +r)c({u, w}) + c({w,v})]
for all three different vertices, v, w € V(G).

-1
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Let, for every positive real number
N-TSP, = (X1,%0, L, Ball, 4ist (LA ), M, cost, minimum,).

The next results show that ti&HRISTOFIDES ALGORITHM assures only a
very weak approximation for instancesAfT'S P, for anyr € IR™. First, we
show a partially positive result and then we prove that it cannot be edientia
improved.

LEMMA 5 For every positive real numbet, CHRISTOFIDES ALGORITHM iS
2 .
(r, O(nlog2((1+7)%)))_quasistable fowlist.

Proof. Let I = (G,c) € Ball, 4ist(La) for anr € RT. Let T be the
minimal spanning tree constructed in Step 1. kebe the Eulerian tour con-

structed in Step 4 anf; = vy, v2,v3, . .., Un, Unt1, Wherev, 1 = vy, be the
Hamiltonian tour constructed by shorteningin Step 5.
Clearly,
Wiy = vy, Pl, V2, PQ, V3y...,Un, Pn, Un+1,
whereP, is a path between; andv; ., fori = 1,2,...,n. To exchange a path

v, P,u of alengthm, m € IN™, for the edgd v, u} we proceed as follows. For
anyp, s,t € V(G), one can exchange the patls, ¢ for the edge{p, t} by the
cost increase bounded by the multiplicative constant r). This means that
reducing the lengthn of a path to the lengtfim /2] increases the cost of the
connection between andv by at most(1 + r) times. After at mosflog, m]
such reduction steps one reduces the pat? u of lengthm to the pathv, u,
and

cost(u,v) = c({v,u}) < (1+7r)1°82™1 . cost(v, P, u). (1)

Let M be the matching constructed in Step 3. Following the analysis of the
Christofides algorithm (see Theorem 4.3.5.5 in [Hr03] for instance) we ge
from (1)

cost(My) < % (14 r)les2ml L cost(Hop), (2)
and
cost(Hp) < (1+r)1°82"1 cost(wy). (3)
Thus,
cost(Hy) < (14782l cost(wr) =(1 + )21 [cost(T7) + cost(M7)]
< (14 r)ftoe2n] [cost(Hopt) + %(1 +ryles2nl . cost(Hop)

(1 4 r)Mos2n] (1 + %(1 + ) o2 ’ﬂ) - cost(H opt)

O (nlogz((1+7”)2) . cost(HOpt)) -
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Now we show that the result of Lemma 5 cannot be essentially improved. To
show this, we construct an input for which tABIRISTOFIDES ALGORITHM
provides a very poor approximation.

We construct a weighted complete graph frdmil, 4(LA) as follows
(Figure 1). We start with the paipy, p1,...,p, for n = 2%, k € IN, where
every edge{p;, pi+1} has weight 1. Then we add edggs, p;2} for i =
0,1,...,n—2with weight2-(1+r). Generally, foreveryn € {1, ..., log, n},
we defineweight({pi, piyam}) =2 - (1 +r)™ fori =0,...,n —2™. For
all other edges one can take maximal possible weights in such a way that the
constructed input is iBall,. gis¢(Lr).

2(1+1) 2(1+7)

n-(1+r)log2n = p(l+logz(rt1))

Figure 1.

Let us have a look on the work of thHEHRISTOFIDES ALGORITHM ON
the input (G, weight). There is only one minimal spanning tree that cor-
responds to the path containing all edges of weight 1 (Figure 1). Since ev
ery path contains exactly two vertices of odd degree, the Eulerian gaaph ¢
structed in Step 4 is the cycl® = pg, p1,p2, - . ., Pn, po With the n edges of
weight 1 and the edge of the maximal weight (1 4 r)l°g2" = plHlog2(147),
Since the Eulerian tour is a Hamiltonian tour (Figure 1), the output of the
CHRISTOFIDES ALGORITHM iS unambiguously the cyclgy, p1, ..., pn, Do
with costn + n(1 + r)°82", The optimal tour for this input i$1 o,; =

Do, P2,P4,--- ap2i7p2(i+1)’ <y PnsPn—1,Pn-3,---,P2i+1,P2i—1,---,P3,P1,P0-
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This tour contains two edgd®y, p1 } and{p,—_1, p, } of weight 1 and alh — 2
edges of weigh? - (1 + 7). Thus,cost(Hop:) =242 (1+7) - (n—2) and

cost(D) o on+n- (1+ r)1°g2 n pltloga(l+r) o logy(147)

cost(Hopt) 2+2-(1+7r)-(n—2) " 2n-(14+7r)  2(1+7)"

Thus, we have proved the following result.

LEMMA 6 Foreveryr € RT, ifthe CHRISTOFIDES ALGORITHM iS (r, f,(n))-
guasistable fordist, then

fr(n) > nlos2() /(2 (14 7)),
COROLLARY 7 TheCHRISTOFIDES ALGORITHM IS unstable fordist.

The key question is whether one can modify the Christofides algorithm to
get an algorithm that is stable accordingd®@t. In what follows, we give a
positive answer to this question.

As we have observed, the main problem is that shortening apath, . . .,
um+1 to the edgeuy, u,,+1 can lead to

cost({ur, umy1}) = (1 + )12 cost(uy, ug, ..., umir).

This can increase the cost of the constructed Hamiltonian path by the multi-
plicative factor(1 + r)°&2"1 in the comparison with the cost of the Eulerian
tour. The rough idea, then, is to construct a Hamiltonian tour by shortening
only short paths of the minimal spanning tree constructed in Step 1 of the al-
gorithm.

To realize this idea we shall prove that, for every tfee- (V, E), the graph
T3 = (V,{{z,y} |,y € V, there is a path, P,y in T of a length at mos3})
contains a Hamiltonian toul/. This means that every edde, v} of H has
a corresponding unique path P, ,,,v in T' of a length at mos8. This is a
positive development, but it still does not suffice for our purposese fEh
maining problem is that we need to estimate a good upper bound on the cost of
the pathP(H) = w1, Py ugs 42, Pugus, U3, - - Un—1Pup, 1 un s Uns Py us s U1
(in T) that corresponds to the Hamiltonian taur, us, . . ., u,, u; in T3. Note
that in the naive 2-approximation algorithm the resulting Hamiltonian tour can
be viewed as a shortening of the Eulerian fowith a cost at most twice of
the cost ofT. But, we do not know the frequency of the occurrences of par-
ticular edges ofl’ in P(H). It may happen that the most expensive edges of
T occur more frequently ilP(H) than the cheap edges. Observe also that
cost(T?3) cannot be bounded hy- cost(T') for any constant independent on

2The Eulerian tour uses every edgeloexactly twice.
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T, becausd™ may be even a complete graph for some tfEe$hus, we need
the following technical lemma proving th@ contains a Hamiltonian toul
such that each edge @foccurs at most twice i’ (H ).

DEFINITION 8 LetT be a tree. For every edg:, v} € E(T), letu, P, ,,v
be the unique simple path betweeandv in T'.

Letk be a positive integer. Lél = uq,us, ..., u, be any simple path in
T*. Then, we define thg-path in 7" as

PT(U) = Uy, Pul,uzvu25 Puz,u;ga ey Um—1, Pum_l,um7um'

LEMMA 9 LetT be a tree withn > 3 vertices, and lefp, ¢} be an edge of
T. Then,I® contains a Hamiltonian patly = vy, va, ..., v, p = V1, Un = ¢,
such that every edge &f(7") occurs exactly twice iy (H), whereH = U, p
is a Hamiltonian tour inZ™.

Proof. We prove this assertion by induction on the number of verticés. of

(1) Letn = 3. The only tree of three vertices is

T = ({v1,v2,v3}, {{v1,v2}, {v2,v3}})

and the correspondirifj? is the complete graph of three vertices

({v1, v, va}, {{v1, va}, {ve, va}, {v1,vs}}).

Thus, the only Hamiltonian tour iff™® is vy, ve, v3,v1. The claim of
Lemma 9 is true, sSinc®p(v1, ve, v3,v4) = V1, V2, U3, V2, V1.

(2) Letn > 4 and assume that Lemma 9 is true for trees with fewer than
vertices. Letl’ = (V, E) be a tree|V| = n. Let{p, ¢} be an arbitrary
edge ofT'. Consider the grapi’ = (V, E — {{p, ¢} }) that consists of
two treesT,, andT,, whereT, [T,] is the component of” containing
the vertexp [¢]. Obviously,|V (T},)| < n —1and|V(T},)| <n — 1. Let
p’ and¢/, respectively, be a neighbor pfandg, if any, in T, and Ty,
respectively. Now, we fix some Hamiltonian patfisandU, in 7;; and
Tg’, respectively. To do it, we distinguish three possibilities according to
the cardinalities off}, andTy.

1 1f|V(T,)| =1,thenseU, =p=7p'.
2 If |V(Tp)| = 2, then set,, = p,p’.

3 1If3 < |V(Tp)| < n — 1, then we can apply the induction hypoth-
esis. We set/,, to be a Hamiltonian path fromto p’ in Tp3 such
that P(U,, p) contains every edge @f, exactly twice.
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A Hamiltonian pathU, in T;} can be fixed in the same way &% was
fixed above (Figure 2).

Now, consider the pathy,, Uf obtained by connecting, and the re-
verse ofU, by the edge(p’, ¢'}. Observe, thafy’,¢'} € T3, because
P, p,q,q is a path inT. Following Figure 2, it is obvious thdlt),, Uf
is a Hamiltonian path ifi”®, and that’,,, U, p is a Hamiltonian tour in
T3.

Figure 2.

Observe (by the induction hypothesis or the trivial cases \WiilT},)| <

2) that Pr, (U, p') the Hamiltonian tout/,,, p’ in T contains every edge
of T}, exactly twice. ThuspPr,(U,) contains every edge, but the edge
{p,p'} of T,, exactly twice. The edgép,p’} is contained exactly once
in Pr,(Up). Similarly, Pr,(U,) contains every edge df;, twice, but
the edge{q, ¢'} once. Finally,Pr(U,, Uf,p) contains every edge af
exactly twice, because

1 this is clear from the properties bf, andU(f for every edge from
E— {{p7 Q}7 {pu p/}7 {Q7 q/}},

2 the edgdp’, ¢'} € T3 connecting’, andU,, (Figure 2) is realized

by the pathy’, p, ¢, ¢’ containing edge$p,p'}, {p, ¢}, and{q, ¢’}
of E, and

3 the connection ot/,,, Uf with p is realized directly by the edge

{p.q}.

SEKANINA’S ALGORITHM

Input: A complete graph G = (V, E), and a cost function ¢ : £ —
INT.

Step 1: Construct a minimal spanning tree 7' of GG according to c.

Step 2: Construct T°.
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Step 3:  Find a Hamiltonian tour H in T such that Pr(H) contains
every edge of T' exactly twice.

Output: H.

THEOREM 10 SEKANINA’S ALGORITHM IS a polynomial-time2-approxi-
mation algorithm forA-TSP.

Proof. Obviously, Step 1 and 2 SEKANINA’S ALGORITHM can be per-
formed in timeO(n?). Using Lemma 9 one can implement Step 3 in time
O(n). Thus, the time complexity $EKANINA’S ALGORITHM is in O(n?).

Let Ho,; be an optimal solution for an input instan@&, c) of A-TSP. We
havecost(T') < cost(Hopt). The outputd of SEKANINA’S ALGORITHM can
be viewed as shortening the pa#h(H ) by removing repetitions of vertices in
Pr(H). SincePr(H) contains every edge @f exactly twice,

cost(Pr(H)) =2 cost(T) < 2- cost(Hopt)- (4)

SinceH is obtained fromPr(H) by exchanging simple subpaths by an edge,
andc satisfies the triangle inequality,

cost(H) < cost(Pr(H)). (5)
Combining (4) and (5) we obtaitvst(H) < 2 - cost(Hopt)-

THEOREM 11 For every positive real numbet, SEKANINA’S ALGORITHM
is a polynomial-time(1 + r)2-approximation algorithm for\-T'SP,.

Proof. SInCESEKANINA’S ALGORITHM always outputs a Hamiltonian tour,
it is consistent for TSP. Obviously, the inequality (4) is also true for anytinpu
instance of the general TSP.

Let (G, c) be an input instance ak-TSP.. Since(G, ¢) € Ball,, gist(La),

c({v1,v4}) < (1+ 7“)2 - cost(vy, ve,v3,v4), and
c({ur,us}) < (L+7)- cost(uy,uz,us)

for all edges{uy,us}, {v1,v4} € E(G) and every path, vo, v3, v4 between
v1 andwv4 and every path, uo, us betweenu; andus. SinceH is obtained
from Pr(H) by exchanging a simple subpathBf(H) of length at mos8,

cost(H) < (14 1)2 - cost(Pp(H)). (6)
Combining (4) and (6) we finally obtain
cost(H) < 2- (1 +7)% cost(Pr(H)).
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COROLLARY 12 SEKANINA’S ALGORITHM is stable according ta@ist.

Thus, we have reached our final aim to divide the set of all instancESPf
into an infinite spectrum in such a way that the sets of this spectrum have uppe
bounds on the polynomial-time approximability of their input instances. The
above analysis of TSP shows that it is reasonable to measure the Isaofines
the TSP instances by the distance functiist, i.e., by the degree of violation
of the triangle inequality.

4, Conclusion and an Overview

In the previous sections we have introduced the concept of stability of ap-
proximations. Here we discuss the potential applicability and usefulness of
this concept.

Using this concept, one can establish positive results of the following types:

1 An approximation algorithm or a PTAS can be successfully used for a
larger set of inputs than the set usually considered.

2 We are not able to successfully apply a given approximation algorithm
A (a PTAS) for additional inputs, but one can simply modifyto get a
new approximation algorithm (a new PTAS) working for a larger set of
inputs than the set of inputs df.

3 To learn that an approximation algorithm is unstable for a distance mea-
sure could lead to the development of completely new approximation
algorithms that would be stable according to the considered distance
measure.

The following types of negative results may be achieved:

4. The fact that an approximation algorithm is unstable according to all
"reasonable"” distance measures and so that its use is really restricted to
the original input set.

5. Let@ = (X7, %0, L, L1, M, cost, goal) € N PO be well approximable.
If, for a distance measur® and a constant, one proves the nonex-
istence of any polynomial-time approximation algorithm @y, =
(X1,%0, L, Ball, p(Ly), M, cost, goal), then this means that the prob-
lem @ is "unstable" according t®.

Thus, using the notion of stability one can search for a spectrum of tde har
ness of a problem according to the set of inputs. For instance, congjger
hard problem like TSP or Clique Problem one could get an infinite sequénce
input language<.y, L1, Lo, ... given by some distance measure, wh&rén)

(c) 2004 IFIP



16

is the best achievable approximation ratio for the languageResults of this
kind can essentially contribute to the study of the nature of hardnessaifispe
problems.

The best results known for TSP instances satisfyingithe(1+r)-triangle
inequality are the following ones:

1 Andreae and Bandelt [AB95] showed that the here presented iBakan
Algorithm provides a3? + 3) approximation ratio, which is the best
known for2 < g < 3;

2 Bender and Chekuri [BCh99] designed g3-approximation algorithm,
which is the best fof > 3;

3 Bockenhauer at. al. [BHK02] have modified the Christofides Algo-
rithm in order to get % - 32-approximation algorithm, which is the best
forl < g <2.

Moreover Bender and Chekuri [BCh99] proved a lower bound omptte-
nomial time approximability of this TSP subproblem which grows linearly
with 3.

Further development of these ideas for different versions of the Hanaitton
path problem can be found by Forlizzi at. al. [FHBR], where a few stable
algorithms with respect to relaxed triangle inequality were designed.

Another possibility is to consider the so-calledstrengthen triangle in-
equality, where one requires

c({u,v}) < e [e({u, w}) + c({w, v})]

for ana with 1 > o > 1/2. Observe that forx = 1/2 all edges have the same
weight and so the problem becames trivial. Bockenhauer at. al. [BMK
designed three algorithms for TSP subproblems with instances satisfying the
a-strengthen triangle inequality, which yield the approximation ratios starting
with 1 for « = 1/2 and growing witha to 3/2 for o = 1. A very strong
result has been proved by Béckenhauer and Seibert [BS00] wdiolished an
explicit lower bound on polynomial time approximability of TSP with sharped
triangle inequality for anyx > 1/2 and this lower bounds grows with Thus,

the TSP instances with weights from the interiall + <] form an APX-hard
problem for arbitrary smalt > 0. The subproblems with sharped triangle
inequality were also successfully attacked for the minimum 2-connected span
ning subgraph problems in [BBF02].
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