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Abstract
One can try to parametrize the set of the instances of an optimization prob-

lem and look for in polynomial time achievable approximation ratio with respect
to this parametrization. When the approximation ratio grows with the parame-
ter, but is independent of the size of the instances, then we speak aboutstable
approximation algorithms. An interesting point is that there exist stable approx-
imation algorithms for problems like TSP that is not approximable within any
polynomial approximation ratio in polynomial time (assuming P is not equal
to NP). The investigation of the stability of approximation overcomes in this
way the troubles with measuring the complexity and approximation ratio in the
worst-case manner, because it may success in partitioning of the set ofall input
instances of a hard problem into infinite many classes with respect to the hardest
of the particular inputs. We believe that approaches like this will become the
core of the algorithmics, because they provide a deeper insight in the hardness
of specific problems and in many application we are not interested in the worst-
case problem hardness, but in the hardness of forthcoming problem instances.

1. Introduction

Immediately after introducing NP-hardness (completeness) [Co71] as a con-
cept for proving intractability of computing problems [Ka72], the following
question has been posed: If an optimization problem does not admit an effi-
ciently computable optimal solution, is there a possibility to efficiently com-
pute at least an approximation of the optimal solution? Several researchers
[Jo74, Lo75, Chr76, IK75] provided already in the middle of the seventies a
positive answer for some optimization problems. It may seem to be a fasci-
nating effect if one jumps from the exponential complexity (a huge inevitable
amount of physical work) to the polynomial complexity (tractable amount of
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physical work) due to a small change in the requirement —instead of an exact
optimal solution one forces a solution whose quality differs from the qual-
ity of an optimal solution at most byε · 100 % for someε. This effect is
very strong, especially, if one considers problems for which this approxima-
tion concept works for any smallε (see the concept of approximation schemes
in [IK75, MPS98, Pa94, BC93, Va03, Hr03]).

There is also another possibility to jump from NP to P. Namely, to consider
the subset of inputs with a special, nice property instead of the whole set of
inputs for which the problem is well-defined. A nice example is the Travelling
Salesman Problem (TSP). TSP is not only NP-hard, but also the search of an
approximation solution for TSP is NP-hard for everyε. But if one considers
TSP for inputs satisfying the triangle inequality (the so-called∆-TSP), one can
even design an approximation algorithm [Chr76] with the approximation ratio
ε = 1

2 . The situation is still more interesting, if one considers the Euclidean
TSP, where the distances between the nodes correspond to the distancesin the
Euclidean metrics. The Euclidean TSP is NP-hard [Pa77], but for everysmall
ε > 0 one can design anε-approximation algorithm [Ar96, Ar97, Mi96] with
an almost linear time complexity.

The fascinating observations of huge quantitive changes mentioned above
lead us to our proposal to consider the "stability" of approximation algorithms.
Let us consider the following scenario. One has an optimization problem P for
two sets of inputsL1 andL2, L1 ⊂ L2. For L1 there exists an polynomial-
time ε-approximation algorithmA, but for L2 there is no polynomial-timeδ-
approximation algorithm for anyδ > 0 (if NP is not equal to P). We pose the
following question: Is the algorithmA really useful for inputs fromL1 only?
Let us consider a metricsM in L2 determining the distance between any two
inputs inL2. Now, one can consider an inputx ∈ L2 − L1, for which there
exists any ∈ L1 such thatdistanceM (x, y) ≤ k for some positive realk. One
can look for how "good" the algorithmA is for the inputx ∈ L2 − L1. If for
everyk > 0 and everyx with the distance at mostk to L1, A computes anδε,k

approximation of an optimal solution forx (δε,k is considered to be a constant
depending onk andε only), then one can say thatA is "(approximation) stable"
according to the metricsM .

The idea of this concept is similar to that of the stability of numerical algo-
rithms. But instead of observing the size of the change of the output value ac-
cording to a small change of the input value, we look for the size of the change
of the approximation ratio according to a small change in the specification
(some parameters, characteristics) of the set of problem instances considered.
If the exchange of the approximation ratio is small for every small change in
the specification of the set of problem instances, then we have a stable algo-
rithm. If a small change in the specification of the set of problem instances
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causes an essential (depending on the size of the input instances) increase of
the relative error, then the algorithm is unstable.

The concept of stability enables us to show positive results extending the
applicability of known approximation algorithms. As we shall see later, the
concept also motivates to modify an unstable algorithmA in order to get a
stable algorithmB that achieves the same approximation ratio on the original
set of problem instances asA has, butB can also be successfully used outside
of the original set of problem instances. This concept is useful because there
are a lot of problems for which an additional assumption on the “parameters"
of the problem instances leads to an essential decrease in the hardness of the
problem. Such effects are the starting points for trying to partition the whole
set of problem instances into a spectrum of classes according to polynomial-
time approximability.

As one can observe this approach is similar to the concept of parametrized
complexity of Downey and Fellows [DF95, DF99] in trying to overcome the
troubles caused by measuring complexity and approximation ratio in the worst-
case manner. The main aim of both concepts is partitioning of the set of all
instances of a hard problem into infinite many classes with respect to the hard-
ness of particular instances. We believe that approaches like these will bethe
core of future algorithmics, because they provide a deeper insight in the nature
of the hardness of specific problems and in many applications we are not inter-
ested in the worst-case problem hardness, but in the hardness of forthcoming
problem instances.

2. Definition of the Stability of Approximation
Algorithms

We assume that the reader is familiar with the basic concepts and notions
of algorithmics and complexity theory as presented in standard textbooks like
[BC93, GJ79, Ho96, Pa94, We93, Hr04]. Next, we give a formal definition
of the notion of an optimization problem. LetIN = {0, 1, 2, ...} be the set of
nonnegative integers, and letIR+ be the set of positive reals.

Definition 1 An optimization problem U is an 7-tupleU = (ΣI , ΣO, L,
LI ,M, cost, goal), where

(i) ΣI is an alphabet calledinput alphabet,

(ii) ΣO is an alphabet calledoutput alphabet,

(iii) L ⊆ Σ∗
I is a language overΣI called thelanguage of consistent inputs,

(iv) LI ⊆ L is a language overΣI called thelanguage of actual inputs,

(v) M is a function fromL to 2Σ∗

O , where, for everyx ∈ L, M(x) is called
theset of feasible solutions for the inputx,
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(vi) cost is a function, calledcost function, that for every pair(u, x), where
u ∈ M(x) for somex ∈ L, assigns a positive real numbercost(u, x),

(vii) goal ∈ {minimum, maximum}.

For everyx ∈ L, we define

OutputU(x) = {y ∈ M(x)|cost(y) = goal{cost(z)|z ∈ M(x)}}

as the set of optimal solutions, andOptU(x)= cost(y) for somey ∈
OutputU (x).

Clearly, the meaning forΣI , ΣO, M, cost andgoal is the usual one.L may
be considered as a set of consistent inputs, i.e., the inputs for which the op-
timization problem is consistently defined.LI is the set of inputs considered
and only these inputs are taken into account when one determines the com-
plexity of the optimization problemU . This kind of definition is useful for
considering the complexity of optimization problems parametrized according
to their languages of actual inputs. In what followsLanguage(U) denotes
the languageLI of actual inputs ofU .

Definition 2 Let U = (ΣI , ΣO, L, LI ,M, cost, goal) be an optimization
problem. We say that an algorithmA is a consistent algorithm for U if, for
every inputx ∈ LI , A computes an outputA(x) ∈ M(x). We say thatA
solves U if, for everyx ∈ LI , A computes an outputA(x) fromOutputU (x).
The time complexity ofA is defined as the function

TimeA(n) = max{TimeA(x) | x ∈ LI ∩ Σn
I }

from IN to IN, whereTimeA(x) is the length of the computation ofA onx.

Definition 3 Let U = (ΣI , ΣO, L, LI ,M, cost, goal) be an optimization
problem, and letA be a consistent algorithm forU .

For everyx ∈ LI , the approximation ratioRA(x) of A on x is defined as

RA(x) = max

{

cost(A(x))

OptU (x)
,

OptU (x)

cost(A(x))

}

.

For anyn ∈ IN, we define theapproximation ration of A as

RA(n) = max{RA(x) | x ∈ LI ∩ (ΣI)
n}.

For any positive realδ, we say thatA is anδ-approximation algorithm for U

if RA(x) ≤ δ for everyx ∈ LI .
For every functionf : IN → IR, we say thatA is a f(n)-approximation

algorithm for U if RA(n) ≤ f(n) for everyn ∈ IN.
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In order to define the notion of stability of approximation algorithms we
need to consider something like a distance between a languageL and a word
outsideL.

Definition 4 LetU = (ΣI , ΣO, L, LI ,M, cost, goal) andU = (ΣI , ΣO, L,
L,M, cost, goal) be two optimization problems withLI ⊂ L. A distance
function for U according to LI is any functionhL : L → IR+ satisfying the
property

hL(x) = 0 for everyx ∈ LI .

We define, for anyr ∈ IR+,

Ballr,h(LI) = {w ∈ L |h(w) ≤ r}.

Let A be a consistent algorithm forU , and letA be anε-approximation al-
gorithm forU for someε ∈ IR+. Let p be a positive real. We say thatA is
p-stable according to h if, for every real0 ≤ r ≤ p, there exists aδr,ε ∈
IR+ such thatA is an δr,ε-approximation algorithm forUr = (ΣI , ΣO, L,
Ballr,h(LI),M, cost, goal).1

A is stable according to h if A is p-stable according toh for everyp ∈ IR+.
We say thatA is unstable according to h if A is notp-stable for anyp > 0.

For every positive integerr, and every functionfr : IN → IR+ we say that
A is (r, f(n))-quasistable according to h if A is an fr(n)-approximation
algorithm forUr = (ΣI , ΣO, L, Ballr,h(LI), M, cost, goal).

One may see that the notion of stability can be useful for answering the
question how broadly a given approximation algorithm is applicable. If one is
interested in negative results then one can try to show that for any reasonable
distance measure the considered algorithm cannot be extended to work for a
much larger set of inputs than the original one. In this way one can searchfor
some more exact boundaries between polynomial approximability and polyno-
mial non-approximability.

3. Examples

We consider the well-known TSP problem that is in its general form very
hard for approximation. But if one considers complete graphs in which the
triangle inequality holds, then we have a1.5-approximation algorithm due to
Christofides [Chr76]. The idea of this algorithm can be shortly describedas
follows.

1Note, thatδr,ε is a constant depending onr andε only.

7

(c) 2004 IFIP



Christofides algorithm

Input: A complete graph G = (V, E), and a cost function c : E →
IN+ satisfying the triangle inequality.

Step 1: Construct a minimal spanning tree T of G according to c.

Step 2: S := {v ∈ V | degT (v) is odd}.

Step 3: Compute a minimum-weight perfect matching M on S in
G.

Step 4: Create the multigraph G′ = (V, E(T ) ∪ M) and construct
an Eulerian tour ω in G′.

Step 5: Construct a Hamiltonian tour H of G by shortening ω (i.e.,
by removing all repetitions of the occurrences of every ver-
tex in ω in one run via ω from the left to the right).

Output: H.

Since the triangle inequality holds and Step 5 is executed by repeatedly short-
ening a pathx, u1, ..., um, y by the edge{x, y} (becauseu1, ..., um have al-
ready occured before in the prefix ofω) the cost ofH is at most the cost ofω.
Thus, the crucial point for the success of Christofides algorithm is the triangle
inequality. A reasonable possibility to search for an extension of the appli-
cation of this algorithm is to look for inputs that "almost" satisfy the triangle
inequality. In what follows we do it in two different ways.

Let ∆ − TSP = (ΣI , ΣO, L, LI ,M, cost, minimum) be a representa-
tion of the TSP with the triangle inequality. We may assumeΣI = ΣO =
{0, 1, #}, L contains codes of all weight functions for edges of complete
graphs, andLI contains codes of weight functions that satisfy the triangle
inequality. Let, for everyx ∈ L, Gx = (Vx, Ex, weightx) be the complete
weighted graph coded byx. Obviously, the Christofides algorithm is consis-
tent for(ΣI , ΣO, L, L,M, cost, minimum).

We define for everyx ∈ L,

dist(x) =

max

{

0, max

{

weight({u, v})

weight({u, p}) + weight({p, v})
− 1

∣

∣

∣

∣

u, v, p ∈ Vx

}}

For the simplicity we consider the size ofx as the number of nodes ofGx

instead of|x|.
We observe thatdist(G, c) ≤ r implies the so-called(1+r)-relaxed triangle

inequality
c({u, v}) ≤ (1 + r)[c({u, w}) + c({w, v})]

for all three different verticesu, v, w ∈ V (G).
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Let, for every positive real numberr,

4-TSPr = (ΣI , ΣO, L,Ballr,dist(L4),M, cost ,minimum).

The next results show that theChristofides algorithm assures only a
very weak approximation for instances of4-TSPr for anyr ∈ IR+. First, we
show a partially positive result and then we prove that it cannot be essentially
improved.

Lemma 5 For every positive real numberr, Christofides algorithm is
(r, O(nlog2((1+r)2)))-quasistable fordist .

Proof. Let I = (G, c) ∈ Ballr,dist(L4) for an r ∈ IR+. Let TI be the
minimal spanning tree constructed in Step 1. LetωI be the Eulerian tour con-
structed in Step 4 andHI = v1, v2, v3, . . . , vn, vn+1, wherevn+1 = v1, be the
Hamiltonian tour constructed by shorteningωI in Step 5.

Clearly,
ωI = v1, P1, v2, P2, v3, . . . , vn, Pn, vn+1,

wherePi is a path betweenvi andvi+1 for i = 1, 2, . . . , n. To exchange a path
v, P, u of a lengthm, m ∈ IN+, for the edge{v, u} we proceed as follows. For
anyp, s, t ∈ V (G), one can exchange the pathp, s, t for the edge{p, t} by the
cost increase bounded by the multiplicative constant(1 + r). This means that
reducing the lengthm of a path to the lengthdm/2e increases the cost of the
connection betweenu andv by at most(1 + r) times. After at mostdlog2 me
such reduction steps one reduces the pathv, P, u of lengthm to the pathv, u,
and

cost(u, v) = c({v, u}) ≤ (1 + r)dlog2 me · cost(v, P, u). (1)

Let MI be the matching constructed in Step 3. Following the analysis of the
Christofides algorithm (see Theorem 4.3.5.5 in [Hr03] for instance) we get
from (1)

cost(MI) ≤
1

2
· (1 + r)dlog2 ne · cost(HOpt), (2)

and
cost(HI) ≤ (1 + r)dlog2 ne

cost(ωI). (3)

Thus,

cost(HI) ≤ (1 + r)dlog2 ne
cost(ωI) =(1 + r)dlog2e [cost(TI) + cost(MI)]

≤ (1 + r)dlog2 ne
[

cost(HOpt) +
1

2
(1 + r)dlog2 ne · cost(HOpt)

]

= (1 + r)dlog2 ne
(

1 +
1

2
(1 + r)dlog2 ne

)

· cost(HOpt)

= O
(

nlog2((1+r)2) · cost(HOpt)
)

.
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Now we show that the result of Lemma 5 cannot be essentially improved. To
show this, we construct an input for which theChristofides algorithm

provides a very poor approximation.
We construct a weighted complete graph fromBallr,dist(L4) as follows

(Figure 1). We start with the pathp0, p1, . . . , pn for n = 2k, k ∈ IN, where
every edge{pi, pi+1} has weight 1. Then we add edges{pi, pi+2} for i =
0, 1, . . . , n−2 with weight2·(1+r). Generally, for everym ∈ {1, . . . , log2 n},
we defineweight({pi, pi+2m}) = 2m · (1 + r)m for i = 0, . . . , n − 2m. For
all other edges one can take maximal possible weights in such a way that the
constructed input is inBallr,dist(LI).

. . . 

4 · (1 + r)24 · (1 + r)2

4 · (1 + r)24 · (1 + r)24 · (1 + r)2

2(1+r)2(1+r)

2(1+r) 2(1+r)2(1+r)2(1+r)2(1+r)

2(1+r)2(1+r)2(1+r)

1 111111111

n · (1 + r)log2
n = n(1+log2(r+1))

Figure 1.

Let us have a look on the work of theChristofides algorithm on
the input (G, weight). There is only one minimal spanning tree that cor-
responds to the path containing all edges of weight 1 (Figure 1). Since ev-
ery path contains exactly two vertices of odd degree, the Eulerian graph con-
structed in Step 4 is the cycleD = p0, p1, p2, . . . , pn, p0 with then edges of
weight 1 and the edge of the maximal weightn · (1 + r)log2 n = n1+log2(1+r).
Since the Eulerian tour is a Hamiltonian tour (Figure 1), the output of the
Christofides algorithm is unambiguously the cyclep0, p1, . . . , pn, p0

with costn + n(1 + r)log2 n. The optimal tour for this input isHOpt =

p0, p2, p4, . . . , p2i, p2(i+1), . . . , pn, pn−1, pn−3, . . . , p2i+1, p2i−1, . . . , p3, p1, p0.
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This tour contains two edges{p0, p1} and{pn−1, pn} of weight 1 and alln−2
edges of weight2 · (1 + r). Thus,cost(HOpt) = 2 + 2 · (1 + r) · (n − 2) and

cost(D)

cost(HOpt)
=

n + n · (1 + r)log2 n

2 + 2 · (1 + r) · (n − 2)
≥

n1+log2(1+r)

2n · (1 + r)
=

nlog2(1+r)

2(1 + r)
.

Thus, we have proved the following result.

Lemma 6 For everyr ∈ IR+, if theChristofides algorithm is (r, fr(n))-
quasistable fordist , then

fr(n) ≥ nlog2(1+r)/(2 · (1 + r)).

Corollary 7 TheChristofides algorithm is unstable fordist .

The key question is whether one can modify the Christofides algorithm to
get an algorithm that is stable according todist . In what follows, we give a
positive answer to this question.

As we have observed, the main problem is that shortening a pathu1, u2, . . . ,
um+1 to the edgeu1, um+1 can lead to

cost({u1, um+1}) = (1 + r)dlog2 me · cost(u1, u2, . . . , um+1).

This can increase the cost of the constructed Hamiltonian path by the multi-
plicative factor(1 + r)dlog2 ne in the comparison with the cost of the Eulerian
tour. The rough idea, then, is to construct a Hamiltonian tour by shortening
only short paths of the minimal spanning tree constructed in Step 1 of the al-
gorithm.

To realize this idea we shall prove that, for every treeT = (V, E), the graph
T 3 = (V, {{x, y} |x, y ∈ V, there is a pathx, P, y in T of a length at most3})
contains a Hamiltonian tourH. This means that every edge{u, v} of H has
a corresponding unique pathu, Pu,v, v in T of a length at most3. This is a
positive development, but it still does not suffice for our purposes. The re-
maining problem is that we need to estimate a good upper bound on the cost of
the pathP (H) = u1, Pu1,u2 , u2, Pu2,u3 , u3, . . . , un−1Pun−1,un , un, Pun,u1 , u1

(in T ) that corresponds to the Hamiltonian touru1, u2, . . . , un, u1 in T 3. Note
that in the naive 2-approximation algorithm the resulting Hamiltonian tour can
be viewed as a shortening of the Eulerian tour2 with a cost at most twice of
the cost ofT . But, we do not know the frequency of the occurrences of par-
ticular edges ofT in P (H). It may happen that the most expensive edges of
T occur more frequently inP (H) than the cheap edges. Observe also that
cost(T 3) cannot be bounded byc · cost(T ) for any constantc independent on

2The Eulerian tour uses every edge ofT exactly twice.
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T , becauseT 3 may be even a complete graph for some treesT . Thus, we need
the following technical lemma proving thatT 3 contains a Hamiltonian tourH
such that each edge ofT occurs at most twice inP (H).

Definition 8 Let T be a tree. For every edge{u, v} ∈ E(T ), let u, Pu,v, v
be the unique simple path betweenu andv in T .

Let k be a positive integer. LetU = u1, u2, . . . , um be any simple path in
T k. Then, we define theU -path in T as

PT (U) = u1, Pu1,u2 , u2, Pu2,u3 , . . . , um−1, Pum−1,um , um.

Lemma 9 Let T be a tree withn ≥ 3 vertices, and let{p, q} be an edge of
T . Then,T 3 contains a Hamiltonian pathU = v1, v2, . . . , vn, p = v1, vn = q,
such that every edge ofE(T ) occurs exactly twice inPT (H), whereH = U, p
is a Hamiltonian tour inT 3.

Proof. We prove this assertion by induction on the number of vertices ofT .

(1) Letn = 3. The only tree of three vertices is

T = ({v1, v2, v3}, {{v1, v2}, {v2, v3}})

and the correspondingT 3 is the complete graph of three vertices

({v1, v2, v3}, {{v1, v2}, {v2, v3}, {v1, v3}}).

Thus, the only Hamiltonian tour inT 3 is v1, v2, v3, v1. The claim of
Lemma 9 is true, sincePT (v1, v2, v3, v4) = v1, v2, v3, v2, v1.

(2) Let n ≥ 4 and assume that Lemma 9 is true for trees with fewer thann
vertices. LetT = (V, E) be a tree,|V | = n. Let {p, q} be an arbitrary
edge ofT . Consider the graphT ′ = (V, E − {{p, q}}) that consists of
two treesTp andTq, whereTp [Tq] is the component ofT ′ containing
the vertexp [q]. Obviously,|V (Tp)| ≤ n − 1 and|V (Tq)| ≤ n − 1. Let
p′ andq′, respectively, be a neighbor ofp andq, if any, in Tp andTq,
respectively. Now, we fix some Hamiltonian pathsUp andUq in T 3

p and
T 3

q , respectively. To do it, we distinguish three possibilities according to
the cardinalities ofTp andTq.

1 If |V (Tp)| = 1, then setUp = p = p′.

2 If |V (Tp)| = 2, then setUp = p, p′.

3 If 3 ≤ |V (Tp)| ≤ n − 1, then we can apply the induction hypoth-
esis. We setUp to be a Hamiltonian path fromp to p′ in T 3

p such
thatP (Up, p) contains every edge ofTp exactly twice.
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A Hamiltonian pathUq in T 3
q can be fixed in the same way asUp was

fixed above (Figure 2).

Now, consider the pathUp, U
R
q obtained by connectingUp and the re-

verse ofUq by the edge{p′, q′}. Observe, that{p′, q′} ∈ T 3, because
p′, p, q, q′ is a path inT . Following Figure 2, it is obvious thatUp, U

R
q

is a Hamiltonian path inT 3, and thatUp, U
R
q , p is a Hamiltonian tour in

T 3.

p q

p′ q′

Up Uq

Figure 2.

Observe (by the induction hypothesis or the trivial cases with|V (Tp)| ≤
2) thatPTp

(Up, p
′) the Hamiltonian tourUp, p

′ in T 3 contains every edge
of Tp exactly twice. Thus,PTp

(Up) contains every edge, but the edge
{p, p′} of Tp exactly twice. The edge{p, p′} is contained exactly once
in PTp

(Up). Similarly, PTq
(Uq) contains every edge ofTq twice, but

the edge{q, q′} once. Finally,PT (Up, U
R
q , p) contains every edge ofT

exactly twice, because

1 this is clear from the properties ofUp andUR
q for every edge from

E − {{p, q}, {p, p′}, {q, q′}},

2 the edge{p′, q′} ∈ T 3 connectingUp andUq (Figure 2) is realized
by the pathp′, p, q, q′ containing edges{p, p′}, {p, q}, and{q, q′}
of E, and

3 the connection ofUp, U
R
q with p is realized directly by the edge

{p, q}.

Sekanina’s Algorithm

Input: A complete graph G = (V, E), and a cost function c : E →
IN+.

Step 1: Construct a minimal spanning tree T of G according to c.

Step 2: Construct T 3.
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Step 3: Find a Hamiltonian tour H in T 3 such that PT (H) contains
every edge of T exactly twice.

Output: H.

Theorem 10 Sekanina’s algorithm is a polynomial-time2-approxi-
mation algorithm for4-TSP.

Proof. Obviously, Step 1 and 2 ofSekanina’s algorithm can be per-
formed in timeO(n2). Using Lemma 9 one can implement Step 3 in time
O(n). Thus, the time complexity ofSekanina’s algorithm is in O(n2).

Let HOpt be an optimal solution for an input instance(G, c) of 4-TSP. We
havecost(T ) ≤ cost(HOpt). The outputH of Sekanina’s algorithm can
be viewed as shortening the pathPT (H) by removing repetitions of vertices in
PT (H). SincePT (H) contains every edge ofT exactly twice,

cost(PT (H)) = 2 · cost(T ) ≤ 2 · cost(HOpt). (4)

SinceH is obtained fromPT (H) by exchanging simple subpaths by an edge,
andc satisfies the triangle inequality,

cost(H) ≤ cost(PT (H)). (5)

Combining (4) and (5) we obtaincost(H) ≤ 2 · cost(HOpt).

Theorem 11 For every positive real numberr, Sekanina’s algorithm

is a polynomial-time2(1 + r)2-approximation algorithm for4-TSPr.

Proof. SinceSekanina’s algorithm always outputs a Hamiltonian tour,
it is consistent for TSP. Obviously, the inequality (4) is also true for any input
instance of the general TSP.

Let (G, c) be an input instance of4-TSPr. Since(G, c) ∈ Ballr,dist(L4),

c({v1, v4}) ≤ (1 + r)2 · cost(v1, v2, v3, v4), and

c({u1, u3}) ≤ (1 + r) · cost(u1, u2, u3)

for all edges{u1, u3}, {v1, v4} ∈ E(G) and every pathv1, v2, v3, v4 between
v1 andv4 and every pathu1, u2, u3 betweenu1 andu3. SinceH is obtained
from PT (H) by exchanging a simple subpath ofPT (H) of length at most3,

cost(H) ≤ (1 + r)2 · cost(PT (H)). (6)

Combining (4) and (6) we finally obtain

cost(H) ≤ 2 · (1 + r)2 · cost(PT (H)).
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Corollary 12 Sekanina’s algorithm is stable according todist .

Thus, we have reached our final aim to divide the set of all instances ofTSP
into an infinite spectrum in such a way that the sets of this spectrum have upper
bounds on the polynomial-time approximability of their input instances. The
above analysis of TSP shows that it is reasonable to measure the hardness of
the TSP instances by the distance functiondist , i.e., by the degree of violation
of the triangle inequality.

4. Conclusion and an Overview

In the previous sections we have introduced the concept of stability of ap-
proximations. Here we discuss the potential applicability and usefulness of
this concept.

Using this concept, one can establish positive results of the following types:

1 An approximation algorithm or a PTAS can be successfully used for a
larger set of inputs than the set usually considered.

2 We are not able to successfully apply a given approximation algorithm
A (a PTAS) for additional inputs, but one can simply modifyA to get a
new approximation algorithm (a new PTAS) working for a larger set of
inputs than the set of inputs ofA.

3 To learn that an approximation algorithm is unstable for a distance mea-
sure could lead to the development of completely new approximation
algorithms that would be stable according to the considered distance
measure.

The following types of negative results may be achieved:

4. The fact that an approximation algorithm is unstable according to all
"reasonable" distance measures and so that its use is really restricted to
the original input set.

5. LetQ = (ΣI , ΣO, L, LI ,M, cost, goal) ∈ NPO be well approximable.
If, for a distance measureD and a constantr, one proves the nonex-
istence of any polynomial-time approximation algorithm forQr,D =
(ΣI , ΣO, L, Ballr,D(LI),M, cost, goal), then this means that the prob-
lemQ is "unstable" according toD.

Thus, using the notion of stability one can search for a spectrum of the hard-
ness of a problem according to the set of inputs. For instance, considering a
hard problem like TSP or Clique Problem one could get an infinite sequenceof
input languagesL0, L1, L2, ... given by some distance measure, whereRr(n)
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is the best achievable approximation ratio for the languageLr. Results of this
kind can essentially contribute to the study of the nature of hardness of specific
problems.

The best results known for TSP instances satisfying theβ = (1+r)-triangle
inequality are the following ones:

1 Andreae and Bandelt [AB95] showed that the here presented Sekanina
Algorithm provides a(β2 + β) approximation ratio, which is the best
known for2 ≤ β ≤ 3;

2 Bender and Chekuri [BCh99] designed a4 ·β-approximation algorithm,
which is the best forβ > 3;

3 Böckenhauer at. al. [BHK+02] have modified the Christofides Algo-
rithm in order to get a32 · β2-approximation algorithm, which is the best
for 1 < β < 2.

Moreover Bender and Chekuri [BCh99] proved a lower bound on thepoly-
nomial time approximability of this TSP subproblem which grows linearly
with β.

Further development of these ideas for different versions of the Hamiltonian
path problem can be found by Forlizzi at. al. [FHP+04], where a few stable
algorithms with respect to relaxed triangle inequality were designed.

Another possibility is to consider the so-calledα-strengthen triangle in-
equality, where one requires

c({u, v}) ≤ α · [c({u, w}) + c({w, v})]

for anα with 1 > α ≥ 1/2. Observe that forα = 1/2 all edges have the same
weight and so the problem becames trivial. Böckenhauer at. al. [BHK+00]
designed three algorithms for TSP subproblems with instances satisfying the
α-strengthen triangle inequality, which yield the approximation ratios starting
with 1 for α = 1/2 and growing withα to 3/2 for α = 1. A very strong
result has been proved by Böckenhauer and Seibert [BS00] who established an
explicit lower bound on polynomial time approximability of TSP with sharped
triangle inequality for anyα > 1/2 and this lower bounds grows withα. Thus,
the TSP instances with weights from the interval[1, 1 + ε] form an APX-hard
problem for arbitrary smallε > 0. The subproblems with sharped triangle
inequality were also successfully attacked for the minimum 2-connected span-
ning subgraph problems in [BBH+02].
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